Your browser doesn't support javascript.
loading
Fast, High-Fidelity Addressed Single-Qubit Gates Using Efficient Composite Pulse Sequences.
Leu, A D; Gely, M F; Weber, M A; Smith, M C; Nadlinger, D P; Lucas, D M.
Afiliação
  • Leu AD; Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
  • Gely MF; Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
  • Weber MA; Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
  • Smith MC; Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
  • Nadlinger DP; Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
  • Lucas DM; Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford OX1 3PU, United Kingdom.
Phys Rev Lett ; 131(12): 120601, 2023 Sep 22.
Article em En | MEDLINE | ID: mdl-37802949
We use electronic microwave control methods to implement addressed single-qubit gates with high speed and fidelity, for ^{43}Ca^{+} hyperfine "atomic clock" qubits in a cryogenic (100 K) surface trap. For a single qubit, we benchmark an error of 1.5×10^{-6} per Clifford gate (implemented using 600 ns π/2 pulses). For 2 qubits in the same trap zone (ion separation 5 µm), we use a spatial microwave field gradient, combined with an efficient four-pulse scheme, to implement independent addressed gates. Parallel randomized benchmarking on both qubits yields an average error 3.4×10^{-5} per addressed π/2 gate. The scheme scales theoretically to larger numbers of qubits in a single register.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Clinical_trials Idioma: En Ano de publicação: 2023 Tipo de documento: Article