Your browser doesn't support javascript.
loading
Measuring Changes in Brain Endothelial Barrier Integrity with Two Impedance-based Biosensors in Response to Cancer Cells and Cytokines.
Anchan, Akshata; Hucklesby, James J W; Graham, E Scott; Angel, Catherine E.
Afiliação
  • Anchan A; Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland; Centre for Brain Research, University of Auckland; a.anchan@auckland.ac.nz.
  • Hucklesby JJW; Centre for Brain Research, University of Auckland; School of Biological Sciences, University of Auckland.
  • Graham ES; Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland; Centre for Brain Research, University of Auckland.
  • Angel CE; School of Biological Sciences, University of Auckland.
J Vis Exp ; (199)2023 09 22.
Article em En | MEDLINE | ID: mdl-37811927
The blood-brain barrier (BBB) protects the brain parenchyma against harmful pathogens in the blood. The BBB consists of the neurovascular unit, comprising pericytes, astrocytic foot processes, and tightly adhered endothelial cells. Here, the brain endothelial cells form the first line of barrier against blood-borne pathogens. In conditions like cancer and neuroinflammation, circulating factors in the blood can disrupt this barrier. Disease progression significantly worsens post barrier disruption, which permits access to or impairment of regions of the brain. This significantly worsens the prognoses, particularly due to limited treatment options available at the level of the brain. Hence, emerging studies aim to investigate potential therapeutics that can prevent these detrimental factors in the blood from interacting with the brain endothelial cells. The commercially available Electric Cell-Substrate Impedance Sensing (ECIS) and cellZscope instruments measure the impedance across cellular monolayers, such as the BBB endothelium, to determine their barrier strength. Here we detail the use of both biosensors in assessing brain endothelial barrier integrity upon the addition of various stimuli. Crucially, we highlight the importance of their high-throughput capability for concurrent investigation of multiple variables and biological treatments.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Neoplasias Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Técnicas Biossensoriais / Neoplasias Tipo de estudo: Prognostic_studies Idioma: En Ano de publicação: 2023 Tipo de documento: Article