Multi-parametric MRI-based machine learning model for prediction of WHO grading in patients with meningiomas.
Eur Radiol
; 34(4): 2468-2479, 2024 Apr.
Article
em En
| MEDLINE
| ID: mdl-37812296
OBJECTIVE: The purpose of this study was to develop and validate a nomogram combined multiparametric MRI and clinical indicators for identifying the WHO grade of meningioma. MATERIALS AND METHODS: Five hundred and sixty-eight patients were included in this study, who were diagnosed pathologically as having meningiomas. Firstly, radiomics features were extracted from CE-T1, T2, and 1-cm-thick tumor-to-brain interface (BTI) images. Then, difference analysis and the least absolute shrinkage and selection operator were orderly used to select the most representative features. Next, the support vector machine algorithm was conducted to predict the WHO grade of meningioma. Furthermore, a nomogram incorporated radiomics features and valuable clinical indicators was constructed by logistic regression. The performance of the nomogram was assessed by calibration and clinical effectiveness, as well as internal validation. RESULTS: Peritumoral edema volume and gender are independent risk factors for predicting meningioma grade. The multiparametric MRI features incorporating CE-T1, T2, and BTI features showed the higher performance for prediction of meningioma grade with a pooled AUC = 0.885 (95% CI, 0.821-0.946) and 0.860 (95% CI, 0.788-0.923) in the training and test groups, respectively. Then, a nomogram with a pooled AUC = 0.912 (95% CI, 0.876-0.961), combined radiomics score, peritumoral edema volume, and gender improved diagnostic performance compared to radiomics model or clinical model and showed good calibration as the true results. Moreover, decision curve analysis demonstrated satisfactory clinical effectiveness of the proposed nomogram. CONCLUSIONS: A novel nomogram is simple yet effective in differentiating WHO grades of meningioma and thus can be used in patients with meningiomas. CLINICAL RELEVANCE STATEMENT: We proposed a nomogram that included clinical indicators and multi-parameter radiomics features, which can accurately, objectively, and non-invasively differentiate WHO grading of meningioma and thus can be used in clinical work. KEY POINTS: ⢠The study combined radiomics features and clinical indicators for objectively predicting the meningioma grade. ⢠The model with CE-T1 + T2 + brain-to-tumor interface features demonstrated the best predictive performance by investigating seven different radiomics models. ⢠The nomogram potentially has clinical applications in distinguishing high-grade and low-grade meningiomas.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Neoplasias Encefálicas
/
Imageamento por Ressonância Magnética Multiparamétrica
/
Neoplasias Meníngeas
/
Meningioma
Tipo de estudo:
Prognostic_studies
/
Risk_factors_studies
Limite:
Humans
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article