Assessing the energy recovery potential at district metered areas inlets of water supply systems: A Spanish case study.
J Environ Manage
; 347: 119229, 2023 Dec 01.
Article
em En
| MEDLINE
| ID: mdl-37820514
The energy required for various processes in the water cycle can have significant economic and environmental impacts. Therefore, efficient energy management in urban water supply systems is crucial for a sustainable operation. By installing energy recovery technologies in these facilities, it is possible to reap the benefits of the infrastructure design by saving energy. In this study, a new methodology to assess the energy recovery at the inlets of district metered areas is presented, considering the city of Murcia (Spain) as case study. This methodology is based on creating a detailed model of city water supply system and calibrating such model with an experimental campaign of measurements. Then, the assessment of the hydraulic potential recovery is analysed through two different energy estimators, one considering the minimum available net head and the other assuming a variable net head. Results show that there are several points where turbines could be installed, most of them recovering in between 1000-5000 kWh, which could be used to cover the yearly energy consumption of about 24-120 m2 of a school or 10-50 traffic lights of such area. Moreover, in some points it could be recovered up to 14500 kWh. Even though these values are not high, the energy recovered could be used for self-consumption of nearby electrical loads, at the time that reduces the pressure in the system, thus leading to leak reductions. Moreover, this kind of energy recovery does not reduce the potential of other proposals for upstream energy recovery, such as replacing pressure reduction valves with turbines instead. The scripts developed to apply the proposed methodology are available in EPANET-Octave file exchange for the researcher community.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Água
/
Purificação da Água
Tipo de estudo:
Prognostic_studies
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article