Your browser doesn't support javascript.
loading
Periodic Defect Engineering of Iron-Nitrogen-Carbon Catalysts for Nitrate Electroreduction to Ammonia.
Zhu, Runxi; Qin, Yanyang; Wu, Tiantian; Ding, Shujiang; Su, Yaqiong.
Afiliação
  • Zhu R; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
  • Qin Y; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
  • Wu T; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
  • Ding S; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
  • Su Y; School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
Small ; 20(8): e2307315, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37828238
ABSTRACT
Iron-nitrogen-carbon single atom catalyst (SAC) is regarded as one of the promising electrocatalysts for NO3 - reduction reaction (NO3 RR) to NH3 due to its high activity and selectivity. However, synergistic effects of topological defects and FeN4 active moiety in Fe-N-C SAC have rarely been investigated. By performing density functional theory (DFT) calculations, 13 defective graphene FeN4 with 585, 484, and 5775 topological line defects are constructed, yielding 585-68-FeN4 with optimal NO3 RR catalytic activity, high selectivity, as well as robust anti-dissolution stability. The high NO3 RR activity on 585-68-FeN4 is well explained by the high valence state of Fe center as well as asymmetric charge distribution on FeN4 moiety influenced by 5- and 8-member rings. This DFT work provides theoretical guidance for engineering NO3 RR performance of iron-nitrogen-carbon catalysts by modulating periodic topological defects.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article