Your browser doesn't support javascript.
loading
MicroRNAs in atrial fibrillation target genes in structural remodelling.
van den Berg, Nicoline W E; Kawasaki, Makiri; Nariswari, Fransisca A; Fabrizi, Benedetta; Neefs, Jolien; van der Made, Ingeborg; Wesselink, Robin; van Boven, Wim Jan P; Driessen, Antoine H G; Jongejan, Aldo; de Groot, Joris R.
Afiliação
  • van den Berg NWE; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands. n.w.vandenberg@amsterdamumc.nl.
  • Kawasaki M; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • Nariswari FA; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • Fabrizi B; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • Neefs J; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • van der Made I; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • Wesselink R; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • van Boven WJP; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • Driessen AHG; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • Jongejan A; Amsterdam UMC, Department of Epidemiology and Data Science, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands.
  • de Groot JR; Amsterdam UMC, University of Amsterdam, Heart Center; Department of Clinical and Experimental Cardiology and Cardiothoracic Surgery, Amsterdam Cardiovascular Sciences, Meibergdreef 9, 1105AZ, Amsterdam, The Netherlands. j.r.degroot@amsterdamumc.nl.
Cell Tissue Res ; 394(3): 497-514, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37833432
ABSTRACT
We aim to elucidate how miRNAs regulate the mRNA signature of atrial fibrillation (AF), to gain mechanistic insight and identify candidate targets for future therapies. We present combined miRNA-mRNA sequencing using atrial tissues of patient without AF (n = 22), with paroxysmal AF (n = 22) and with persistent AF (n = 20). mRNA sequencing previously uncovered upregulated epithelial to mesenchymal transition, endothelial cell proliferation and extracellular matrix remodelling involving glycoproteins and proteoglycans in AF. MiRNA co-sequencing discovered miRNAs regulating the mRNA expression changes. Key downregulated miRNAs included miR-135b-5p, miR-138-5p, miR-200a-3p, miR-200b-3p and miR-31-5p and key upregulated miRNAs were miR-144-3p, miR-15b-3p, miR-182-5p miR-18b-5p, miR-4306 and miR-206. MiRNA expression levels were negatively correlated with the expression levels of a multitude of predicted target genes. Downregulated miRNAs associated with increased gene expression are involved in upregulated epithelial and endothelial cell migration and glycosaminoglycan biosynthesis. In vitro inhibition of miR-135b-5p and miR-138-5p validated an effect of miRNAs on multiple predicted targets. Altogether, the discovered miRNAs may be explored in further functional studies as potential targets for anti-fibrotic therapies in AF.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / MicroRNAs Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Fibrilação Atrial / MicroRNAs Limite: Humans Idioma: En Ano de publicação: 2023 Tipo de documento: Article