Your browser doesn't support javascript.
loading
Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water.
He, Qingdong; Qi, Jie; Liu, Xiangyu; Zhang, Huan; Wang, Yiwen; Wang, Wenbo; Guo, Fang.
Afiliação
  • He Q; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
  • Qi J; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
  • Liu X; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
  • Zhang H; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
  • Wang Y; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
  • Wang W; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
  • Guo F; College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China.
Nanomaterials (Basel) ; 13(19)2023 Sep 23.
Article em En | MEDLINE | ID: mdl-37836268
ABSTRACT
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through an associated calcination-hydrothermal activation process. It has been confirmed that most of the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further hydrothermal activation process may further improve the pore structure and increase surface active sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5% for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In addition, the composite adsorbent also shows high removal capacity for single-component and two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-derived composite adsorbent can be used as an inexpensive material for the decontamination of dyed wastewater.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article