Your browser doesn't support javascript.
loading
The cycle effect quantified: reduced tumour uptake in subsequent cycles of [177Lu]Lu-HA-DOTATATE during peptide receptor radionuclide therapy.
Siebinga, H; Hendrikx, J J M A; de Vries-Huizing, D M V; Huitema, A D R; de Wit-van der Veen, B J.
Afiliação
  • Siebinga H; Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands. h.siebinga@nki.nl.
  • Hendrikx JJMA; Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands. h.siebinga@nki.nl.
  • de Vries-Huizing DMV; Department of Pharmacy & Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • Huitema ADR; Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
  • de Wit-van der Veen BJ; Department of Nuclear Medicine, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
Eur J Nucl Med Mol Imaging ; 51(3): 820-827, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37843598
BACKGROUND: Clear evidence regarding the effect of reduced tumour accumulation in later peptide receptor radionuclide therapy (PRRT) cycles is lacking. Therefore, we aimed to quantify potential cycle effects for patients treated with [177Lu]Lu-HA-DOTATATE using a population pharmacokinetic (PK) modelling approach. METHODS: A population PK model was developed using imaging data from 48 patients who received multiple cycles of [177Lu]Lu-HA-DOTATATE. The five-compartment model included a central, kidney, spleen, tumour and lumped rest compartment. Tumour volume and continued use of long-acting somatostatin analogues (SSAs) were tested as covariates in the model. In addition, the presence of a cycle effect was evaluated by relating the uptake rate in a specific cycle as a fraction of the (tumour or organ) uptake rate in the first cycle. RESULTS: The final PK model adequately captured observed radioactivity accumulation in kidney, spleen and tumour. A higher tumour volume was identified to increase the tumour uptake rate, where a twofold increase in tumour volume resulted in a 2.3-fold higher uptake rate. Also, continued use of long-acting SSAs significantly reduced the spleen uptake rate (68.4% uptake compared to SSA withdrawal (10.5% RSE)). Lastly, a cycle effect was significantly identified, where tumour uptake rate decreased to 86.9% (5.3% RSE) in the second cycle and even further to 79.7% (5.6% RSE) and 77.6% (6.2% RSE) in the third and fourth cycle, respectively, compared to cycle one. CONCLUSIONS: Using a population PK modelling approach, the cycle effect of reduced tumour uptake in subsequent PRRT cycles was quantified. Our findings implied that downregulation of target receptors is probably not the major cause of the cycle effect, due to a plateau in the decrease of tumour uptake in the fourth cycle.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Organometálicos / Cintilografia / Tumores Neuroendócrinos / Tomografia por Emissão de Pósitrons Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Compostos Organometálicos / Cintilografia / Tumores Neuroendócrinos / Tomografia por Emissão de Pósitrons Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article