Your browser doesn't support javascript.
loading
Soundscapes and deep learning enable tracking biodiversity recovery in tropical forests.
Müller, Jörg; Mitesser, Oliver; Schaefer, H Martin; Seibold, Sebastian; Busse, Annika; Kriegel, Peter; Rabl, Dominik; Gelis, Rudy; Arteaga, Alejandro; Freile, Juan; Leite, Gabriel Augusto; de Melo, Tomaz Nascimento; LeBien, Jack; Campos-Cerqueira, Marconi; Blüthgen, Nico; Tremlett, Constance J; Böttger, Dennis; Feldhaar, Heike; Grella, Nina; Falconí-López, Ana; Donoso, David A; Moriniere, Jerome; Burivalová, Zuzana.
Afiliação
  • Müller J; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany. Joerg.Mueller@npv-bw.bayern.de.
  • Mitesser O; Bavarian Forest National Park, Freyungerstr. 2, 94481, Grafenau, Germany. Joerg.Mueller@npv-bw.bayern.de.
  • Schaefer HM; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany.
  • Seibold S; Fundación Jocotoco, Valladolid N24-414 y Luis Cordero, Quito, Ecuador.
  • Busse A; Technical University of Munich, School of Life Sciences, Ecosystem Dynamics and Forest Management Research Group, Hans-Carl-von-Carlowitz-Platz 2, 85354, Freising, Germany.
  • Kriegel P; Berchtesgaden National Park, Doktorberg 6, Berchtesgaden, 83471, Germany.
  • Rabl D; Saxon-Switzerland National Park, An der Elbe 4, 01814, Bad Schandau, Germany.
  • Gelis R; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany.
  • Arteaga A; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany.
  • Freile J; Yanayacu Research Center, Cosanga, Ecuador.
  • Leite GA; Biodiversity Field Lab (BioFL), Khamai Foundation, Quito, Ecuador.
  • de Melo TN; Pasaje El Moro E4-216 y Norberto Salazar, EC 170902, Tumbaco, DMQ, Ecuador.
  • LeBien J; Rainforest Connection, Science Department, 440 Cobia Drive, Suite 1902, Katy, TX, 77494, USA.
  • Campos-Cerqueira M; Rainforest Connection, Science Department, 440 Cobia Drive, Suite 1902, Katy, TX, 77494, USA.
  • Blüthgen N; Rainforest Connection, Science Department, 440 Cobia Drive, Suite 1902, Katy, TX, 77494, USA.
  • Tremlett CJ; Rainforest Connection, Science Department, 440 Cobia Drive, Suite 1902, Katy, TX, 77494, USA.
  • Böttger D; Ecological Networks Lab, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany.
  • Feldhaar H; Ecological Networks Lab, Department of Biology, Technische Universität Darmstadt, Schnittspahnstr. 3, 64287, Darmstadt, Germany.
  • Grella N; Phyletisches Museum, Institute for Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany.
  • Falconí-López A; Animal Population Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
  • Donoso DA; Animal Population Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.
  • Moriniere J; Field Station Fabrikschleichach, Department of Animal Ecology and Tropical Biology, Biocenter, University of Würzburg, Glashüttenstr. 5, 96181, Rauhenebrach, Germany.
  • Burivalová Z; Grupo de Investigación en Biodiversidad, Medio Ambiente y Salud-BIOMAS-Universidad de las Américas, Quito, Ecuador.
Nat Commun ; 14(1): 6191, 2023 10 17.
Article em En | MEDLINE | ID: mdl-37848442
Tropical forest recovery is fundamental to addressing the intertwined climate and biodiversity loss crises. While regenerating trees sequester carbon relatively quickly, the pace of biodiversity recovery remains contentious. Here, we use bioacoustics and metabarcoding to measure forest recovery post-agriculture in a global biodiversity hotspot in Ecuador. We show that the community composition, and not species richness, of vocalizing vertebrates identified by experts reflects the restoration gradient. Two automated measures - an acoustic index model and a bird community composition derived from an independently developed Convolutional Neural Network - correlated well with restoration (adj-R² = 0.62 and 0.69, respectively). Importantly, both measures reflected composition of non-vocalizing nocturnal insects identified via metabarcoding. We show that such automated monitoring tools, based on new technologies, can effectively monitor the success of forest recovery, using robust and reproducible data.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Aprendizado Profundo Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article