Your browser doesn't support javascript.
loading
Actomyosin pulsing rescues embryonic tissue folding from disruption by myosin fluctuations.
Zhu, Hongkang; O'Shaughnessy, Ben.
Afiliação
  • Zhu H; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
  • O'Shaughnessy B; Department of Chemical Engineering, Columbia University, New York, NY 10027, USA.
Res Sq ; 2023 Oct 20.
Article em En | MEDLINE | ID: mdl-37886516
ABSTRACT
During early development, myosin II mechanically reshapes and folds embryo tissue. A muchstudied example is ventral furrow formation in Drosophila, marking the onset of gastrulation. Furrowing is driven by contraction of actomyosin networks on apical cell surfaces, but how the myosin patterning encodes tissue shape is unclear, and elastic models failed to reproduce essential features of experimental cell contraction profiles. The myosin patterning exhibits substantial cell-to-cell fluctuations with pulsatile time-dependence, a striking but unexplained feature of morphogenesis in many organisms. Here, using biophysical modeling we find viscous forces offer the principal resistance to actomyosin-driven apical constriction. In consequence, tissue shape is encoded in the direction-dependent curvature of the myosin patterning which orients an anterior-posterior furrow. Tissue contraction is highly sensitive to cell-to-cell myosin fluctuations, explaining furrowing failure in genetically perturbed embryos whose fluctuations are temporally persistent. In wild-type embryos this disastrous outcome is averted by pulsatile myosin time-dependence, which rescues furrowing by eliminating high frequencies in the fluctuation power spectrum. This low pass filter mechanism may underlie the usage of actomyosin pulsing in diverse morphogenetic processes across many organisms.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article