Your browser doesn't support javascript.
loading
Systems Biology and Peptide Engineering to Overcome Absorption Barriers for Oral Peptide Delivery: Dosage Form Optimization Case Study Preceding Clinical Translation.
Tyagi, Puneet; Patel, Chandresh; Gibson, Kimberly; MacDougall, Fiona; Pechenov, Sergei Y; Will, Sarah; Revell, Jefferson; Huang, Yue; Rosenbaum, Anton I; Balic, Kemal; Maharoof, Umar; Grimsby, Joseph; Subramony, J Anand.
Afiliação
  • Tyagi P; Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
  • Patel C; Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
  • Gibson K; BDD Pharma, Glasgow G4 0SF, UK.
  • MacDougall F; BDD Pharma, Glasgow G4 0SF, UK.
  • Pechenov SY; Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
  • Will S; Bioscience Metabolism, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
  • Revell J; Discovery Sciences, BioPharmaceuticals R&D, AstraZeneca, Cambridge CB2 0AA, UK.
  • Huang Y; Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, San Francisco, CA 94080, USA.
  • Rosenbaum AI; Integrated Bioanalysis, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, San Francisco, CA 94080, USA.
  • Balic K; Clinical Pharmacology and Quantitative Pharmacology, Clinical Pharmacology & Safety Sciences, R&D, AstraZeneca, San Francisco, CA 94080, USA.
  • Maharoof U; Dosage Form Design and Development, BioPharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
  • Grimsby J; Bioscience Metabolism, Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
  • Subramony JA; Biologics Engineering, Oncology R&D, AstraZeneca, Gaithersburg, MD 20878, USA.
Pharmaceutics ; 15(10)2023 Oct 09.
Article em En | MEDLINE | ID: mdl-37896196
ABSTRACT
Oral delivery of peptides and biological molecules promises significant benefits to patients as an alternative to daily injections, but the development of these formulations is challenging due to their low bioavailability and high pharmacokinetic variability. Our earlier work focused on the discovery of MEDI7219, a stabilized, lipidated, glucagon-like peptide 1 agonist peptide, and the selection of sodium chenodeoxycholate (Na CDC) and propyl gallate (PG) as permeation enhancer combinations. We hereby describe the development of the MEDI7219 tablet formulations and composition optimization via in vivo studies in dogs. We designed the MEDI7219 immediate-release tablets with the permeation enhancers Na CDC and PG. Immediate-release tablets were coated with an enteric coating that dissolves at pH ≥ 5.5 to target the upper duodenal region of the gastrointestinal tract and sustained-release tablets with a Carbopol bioadhesive polymer were coated with an enteric coating that dissolves at pH ≥ 7.0 to provide a longer presence at the absorption site in the gastrointestinal tract. In addition to immediate- and enteric-coated formulations, we also tested a proprietary delayed release erodible barrier layer tablet (OralogiKTM) to deliver the payload to the target site in the gastrointestinal tract. The design of tablet dosage forms based on the optimization of formulations resulted in up to 10.1% absolute oral bioavailability in dogs with variability as low as 26% for MEDI7219, paving the way for its clinical development.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article