Delta of Exopalaemon carinicauda: molecular characterization, expression in different tissues and developmental stages, and its SNPs association analysis with development.
Mol Biol Rep
; 50(12): 10083-10095, 2023 Dec.
Article
em En
| MEDLINE
| ID: mdl-37910385
BACKGROUND: The Notch signaling pathway plays a significant role in the gene regulatory network of development of vertebrate and invertebrate. However, as a ligand for the Notch signaling pathway, the mechanism of Delta in the development of Exopalaemon carinicauda is still unclear. METHODS AND RESULTS: The Delta's molecular characteristics, tissue distribution and their association with development in E. carinicauda were studied by RACE (rapid amplification of cDNA end), qRT-PCR (quantitative Real-time PCR) and SNP (single nucleotide polymorphism), respectively. The delta in E. carinicauda had a full-length cDNA of 2807 bp and its Delta of 808 amino-acid residue had the highest identity with the Delta of Homarus americanus (identity = 76.63%). Delta had the highest expression in the ovary, and its expression varied with different stages of embryonic, larval, and ovarian development. After delta RNA interference (with a highest interference efficiency of 66% at 24 h), the expression of Notch signaling pathway genes and developmental related genes was significantly reduced, and the ovarian development was significantly delayed. Further study found that there were 4 SNPs (ds1-4) in delta cDNA, of which two (ds2 T1521G caused a mutation Asn422Lys and ds3 G1674A caused a mutation Tyr473Cys in the EGF-like domain) were associated with the development of E. carinicauda. The Gonadosomatic Index (GSI) of the ds2 TT genotypes was 37.28% and 134.60% higher than E. carinicauda of GT and GG genotype respectively (P < 0.05). CONCLUSION: Our research indicated that delta was involved in the development of E. carinicauda and provided new insights for molecular breeding with SNP markers in E. carinicauda.
Palavras-chave
Texto completo:
1
Base de dados:
MEDLINE
Assunto principal:
Polimorfismo de Nucleotídeo Único
/
Palaemonidae
Limite:
Animals
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article