Your browser doesn't support javascript.
loading
High-fat-diet induced inflammation and apoptosis via activation of Ire1α in liver and hepatocytes of black seabream (Acanthopagrus schlegelii).
Shen, Yuedong; Zhao, Wenli; Monroig, Óscar; Bao, Yangguang; Zhu, Tingting; Jiao, Lefei; Sun, Peng; Tocher, Douglas R; Zhou, Qicun; Jin, Min.
Afiliação
  • Shen Y; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
  • Zhao W; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
  • Monroig Ó; Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), Ribera de Cabanes, 12595, Castellón, Spain.
  • Bao Y; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
  • Zhu T; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
  • Jiao L; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
  • Sun P; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
  • Tocher DR; Guangdong Provincial Key Laboratory of Marine Biotechnology, Institute of Marine Sciences, Shantou University, Shantou, 515063, China.
  • Zhou Q; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
  • Jin M; Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo, 315211, China; Key Laboratory of Aquacultural Biotechnology Ministry of Education, Ningbo University, Ningbo, 315211, China; Key Laboratory of Green Mariculture (Co-construction by Ministry and Province
Fish Shellfish Immunol ; 143: 109212, 2023 Dec.
Article em En | MEDLINE | ID: mdl-37926203
ABSTRACT
The present study aimed to reveal the role of inositol-requiring enzyme 1α (Ire1α) in mediating high-fat-diet (HFD) induced inflammation and apoptosis in fish and elucidate underling mechanisms of action. In experiment 1, black seabream juveniles were fed a control diet (Control, 12 % dietary lipid) or a high fat diet (HFD, 19 % dietary lipid) for eight weeks. In experiment 2, primary hepatocytes were isolated from black seabream juveniles and treated with oleic acid (OA, 200 µmol/L), OA + transfection with non-silencing control siRNA (negative control) (OA + NC), and OA + transfection with ire1α-small interfering RNA (OA + siire1α) for 48 h versus untreated (Control). Results indicated that fish fed HFD increased lipid deposition in the liver and caused hepatic steatosis. HFD group had significantly higher ire1α/Ire1α mRNA and phosphorylated protein expression and endoplasmic reticulum stress (ERS) related genes expression compared to the Control group, indicating that ERS was triggered. Meanwhile, feeding HFD induced inflammation and apoptosis by evaluated nuclear factor kappa B (nf-κb) mRNA and phosphorylated Nf-κb p65 protein expression, and c-Jun N-terminal kinase (jnk) mRNA and protein expression. However, knock down of ire1α (OA + siire1α) in primary hepatocytes alleviated OA-induced increased expression of ire1α/Ire1α mRNA and protein expression, nf-κb/Nf-κb p65 mRNA and phosphorylated protein expression, and jnk/Jnk mRNA and phosphorylated protein expression. These findings revealed the underling mechanism of action of HFD in fish, confirming that HFD increased ESR stress and Ire1α that, in turn, activated Nf-κb and Jnk pathways in hepatocytes and liver mediating HFD-induced inflammation and apoptosis.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dourada Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Dourada Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article