Your browser doesn't support javascript.
loading
Critical Review on Crystal Orientation Engineering of Antimony Chalcogenide Thin Film for Solar Cell Applications.
Li, Ke; Tang, Rongfeng; Zhu, Changfei; Chen, Tao.
Afiliação
  • Li K; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
  • Tang R; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230041, P. R. China.
  • Zhu C; Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China.
  • Chen T; Institute of Energy, Hefei Comprehensive National Science Center, Hefei, 230041, P. R. China.
Adv Sci (Weinh) ; 11(2): e2304963, 2024 Jan.
Article em En | MEDLINE | ID: mdl-37939308
ABSTRACT
The emerging antimony chalcogenide (Sb2 (Sx Se1-x )3 , 0 ≤ x ≤ 1) semiconductors are featured as quasi-1D structures comprising (Sb4 S(e)6 )n ribbons, this structural characteristic generates facet-dependent properties such as directional charge transfer and trap states. In terms of carrier transport, proper control over the crystal nucleation and growth conditions can promote preferentially oriented growth of favorable crystal planes, thus enabling efficient electron transport along (Sb4 S(e)6 )n ribbons. Furthermore, an in-depth understanding of the origin and impact of the crystal orientation of Sb2 (Sx Se1-x )3 films on the performance of corresponding photovoltaic devices is expected to lead to a breakthrough in power conversion efficiency. In fact, there are many studies on the orientation control of Sb2 (Sx Se1-x )3 colloidal nanomaterials. However, the synthesis of Sb2 (Sx Se1-x )3 thin films with controlled facets has recently been a focus in optoelectronic device applications. This work summarizes methodologies that are applied in the fabrication of preferentially oriented Sb2 (Sx Se1-x )3 films, including treatment strategies developed for crystal orientation engineering in each process. The mechanisms in the orientation control are thoroughly analyzed. An outlook on perspectives for the future development of Sb2 (Sx Se1-x )3 solar cells based on recent research and issues on orientation control is finally provided.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article