Your browser doesn't support javascript.
loading
A novel homozygous splice-site mutation of JK gene leads to Jk(a-b-) phenotype.
Yang, Jiaxuan; Ni, Lina; Li, Aijing; Li, Minghao; Ruan, Shulin; Xiang, Dong; Zhu, Ziyan; Ye, Luyi.
Afiliação
  • Yang J; Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
  • Ni L; Department of Blood Transfusion, Weihai Central Hospital, Weihai, China.
  • Li A; Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
  • Li M; Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
  • Ruan S; Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
  • Xiang D; Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
  • Zhu Z; Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
  • Ye L; Immunohematology Lab, Shanghai Institute of Blood Transfusion, Shanghai Blood Center, Shanghai, China.
Transfus Med ; 34(1): 39-45, 2024 Feb.
Article em En | MEDLINE | ID: mdl-37950522
ABSTRACT

OBJECTIVES:

This study aimed to investigate the molecular mechanism of the Jk(a-b-) phenotype in a Chinese transfusion patient.

BACKGROUND:

Many different mutation types relating to Jk(a-b-) phenotype have been reported. However, the splice-site mutation is relatively rare and the related functional verification is lacking. MATERIALS AND

METHODS:

In this study, the blood sample was collected from a transfusion patient with the Jk(a-b-) phenotype. Serotyping was performed using routine serological methods. The exons sequences and coding regions of the JK gene were amplified using polymerase chain reaction and directly sequenced. To perform a minigene splicing assay, the intronic mutation sequences were cloned into a pSPL3 splice reporting vector. The splicing reporter minigene assay was performed in HEK 293T cells.

RESULTS:

The Jk(a-b-) phenotype of the blood sample was identified through serological testing. Sequencing results revealed that the sample had a novel homozygous splice-site mutation JK*02N (NM_015865.7 c.663+3A>C). Further analysis, including cDNA sequencing and minigene splicing assay, confirmed that the novel splice-site mutation resulted in exon skipping. Interestingly, different numbers of exons being skipped were obtained by the two methods.

CONCLUSION:

This study revealed a novel homozygous splicing-site mutation associated with the Jk(a-b-) phenotype in Chinese population. Our results emphasise the importance of the in vitro functional method minigene splicing assay, while also acknowledging its potential limitations when compared to cDNA sequencing.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Splicing de RNA Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Splicing de RNA Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article