Your browser doesn't support javascript.
loading
A simple strategy to obtain graphitic carbon nitride modified TiO2layer for efficient perovskite solar cells.
Guo, Yanru; Zhao, Dandan; Yu, Man; Liu, Manying; Zhang, Yange; Zheng, Zhi.
Afiliação
  • Guo Y; Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China.
  • Zhao D; Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China.
  • Yu M; School of Materials Engineering, Xi'an Aeronautical University, Xi'an 710077, People's Republic of China.
  • Liu M; Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China.
  • Zhang Y; Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China.
  • Zheng Z; Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, People's Republic of China.
Nanotechnology ; 35(7)2023 Dec 01.
Article em En | MEDLINE | ID: mdl-37972403
The power conversion efficiency (PCE) of perovskite solar cells (PSCs) can be improved through the concurrent strategies of enhancing charge transfer and passivating defects. Graphite carbon nitride (g-C3N4) has been demonstrated as a promising modifier for optimizing energy level alignment and reducing defect density in PSCs. However, its preparation process can be complicated. A simple one-step calcination approach was used in this study to prepare g-C3N4-modified TiO2via the incorporation of urea into the TiO2precursor. This modification simultaneously tunes the energy level alignment and passivates interface defects. The comprehensive research confirms that the addition of moderate amounts of g-C3N4to TiO2results in an ideal alignment of energy levels with perovskite, thereby enhancing the ability to separate and transfer charges. Additionally, the g-C3N4-modified perovskite films exhibit an increase in grain size and crystallinity, which reduces intrinsic defects density and extends charge recombination time. Therefore, the g-C3N4-modified PSC achieves a champion PCE of 20.00%, higher than that of the control PSC (17.15%). Our study provides a systematic comprehension of the interfacial engineering strategy and offers new insights into the development of high-performance PSCs.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article