Your browser doesn't support javascript.
loading
Uptake mechanism, translocation, and transformation of organophosphate esters in water hyacinth (Eichhornia crassipes): A hydroponic study.
Lao, Zhi-Lang; Wu, Dan; Li, Hui-Ru; Liu, Yi-Shan; Zhang, Long-Wei; Feng, Yu-Fei; Jiang, Xue-Yi; Wu, Dong-Wei; Hu, Jun-Jie; Ying, Guang-Guo.
Afiliação
  • Lao ZL; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
  • Wu D; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
  • Li HR; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China. Electronic address: huiru.li@m.s
  • Liu YS; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
  • Zhang LW; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
  • Feng YF; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
  • Jiang XY; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
  • Wu DW; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
  • Hu JJ; School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
  • Ying GG; SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, School of Environment, South China Normal University, Guangzhou, 510006, China.
Environ Pollut ; 341: 122933, 2024 Jan 15.
Article em En | MEDLINE | ID: mdl-37977360
ABSTRACT
Owing to their dominant wastewater origin, bioavailability, and toxicity, the occurrence and behavior of organophosphate esters (OPEs) in aquatic systems have attracted considerable attention over the past two decades. Aquatic plants can accumulate and metabolize OPEs in water, thereby playing an important role in their behavior and fate in waterbodies. However, their uptake, translocation and transformation mechanisms in plants remain incompletely characterized. We investigated the accumulation and transformation of OPEs in water hyacinth (Eichhornia crassipes) through a series of hydroponic experiments using three representative OPEs, tris(2-chloroethyl) phosphate (TCEP), tris(2-butoxyethyl) phosphate (TBEP), and triphenyl phosphate (TPP). These OPEs can not only be adsorbed onto and enter plant roots via passive diffusion pathways, which are facilitated by anion channels and/or aquaporins, but also can return to the solution when concentration gradients exist. After entry, hydrophilic TCEP showed a dominant distribution in the cell sap, strong acropetal transportability, and rapid translocation rate, whereas hydrophobic TPP was mostly retained in the root cell wall and therefore demonstrated weak acropetal transportability; TBEP with moderate hydrophilicity remained in the middle. All these OPEs can be transformed into diesters, which presented higher proportions in the cell sap and therefore have stronger acropetal transferability than their parent OPEs. TCEP exhibits the lowest biodegradability, followed by TPP and TBEP. These OPEs exerted apparent effects on plant growth, photosynthesis, and the diversity and composition of the rhizosphere microbial community.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Eichhornia / Retardadores de Chama Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Eichhornia / Retardadores de Chama Idioma: En Ano de publicação: 2024 Tipo de documento: Article