Your browser doesn't support javascript.
loading
Axis convergence in C. elegans embryos.
Bhatnagar, Archit; Nestler, Michael; Gross, Peter; Kramar, Mirna; Leaver, Mark; Voigt, Axel; Grill, Stephan W.
Afiliação
  • Bhatnagar A; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany.
  • Nestler M; Institute of Scientific Computing, Technische Universitӓt Dresden, Zellescher Weg 25, Dresden 01217, Germany.
  • Gross P; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany; Biotechnology Center (BIOTEC), Technische Universitӓt Dresden, Tatzberg 47/49, Dresden 01307, Germany.
  • Kramar M; Biotechnology Center (BIOTEC), Technische Universitӓt Dresden, Tatzberg 47/49, Dresden 01307, Germany.
  • Leaver M; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany.
  • Voigt A; Institute of Scientific Computing, Technische Universitӓt Dresden, Zellescher Weg 25, Dresden 01217, Germany; Cluster of Excellence Physics of Life, Technische Universitӓt Dresden, Arnoldstrase 18, Dresden 01307, Germany; Center for Systems Biology Dresden, Pfotenhauerstrase 108, Dresden 01037, Ge
  • Grill SW; Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrase 108, Dresden 01037, Germany; Cluster of Excellence Physics of Life, Technische Universitӓt Dresden, Arnoldstrase 18, Dresden 01307, Germany; Center for Systems Biology Dresden, Pfotenhauerstrase 108, Dresden 01037, Germa
Curr Biol ; 33(23): 5096-5108.e15, 2023 12 04.
Article em En | MEDLINE | ID: mdl-37979577
ABSTRACT
Embryos develop in a surrounding that guides key aspects of their development. For example, the anteroposterior (AP) body axis is always aligned with the geometric long axis of the surrounding eggshell in fruit flies and worms. The mechanisms that ensure convergence of the AP axis with the long axis of the eggshell remain unresolved. We investigate axis convergence in early C. elegans development, where the nascent AP axis, when misaligned, actively re-aligns to converge with the long axis of the egg. We identify two physical mechanisms that underlie axis convergence. First, bulk cytoplasmic flows, driven by actomyosin cortical flows, can directly reposition the AP axis. Second, active forces generated within the pseudocleavage furrow, a transient actomyosin structure similar to a contractile ring, can drive a mechanical re-orientation such that it becomes positioned perpendicular to the long axis of the egg. This in turn ensures AP axis convergence. Numerical simulations, together with experiments that either abolish the pseudocleavage furrow or change the shape of the egg, demonstrate that the pseudocleavage-furrow-dependent mechanism is a major driver of axis convergence. We conclude that active force generation within the actomyosin cortical layer drives axis convergence in the early nematode.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Caenorhabditis elegans / Proteínas de Caenorhabditis elegans Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Caenorhabditis elegans / Proteínas de Caenorhabditis elegans Limite: Animals Idioma: En Ano de publicação: 2023 Tipo de documento: Article