Your browser doesn't support javascript.
loading
Emergence of tip singularities in dissolution patterns.
Chaigne, Martin; Carpy, Sabrina; Massé, Marion; Derr, Julien; Courrech du Pont, Sylvain; Berhanu, Michael.
Afiliação
  • Chaigne M; Matière et Systèmes Complexes, Université Paris Cité, CNRS (UMR 7057), Paris 75013, France.
  • Carpy S; Laboratoire de Planétologie et Géosciences, Nantes Université, CNRS (UMR 6112), Nantes 44322, France.
  • Massé M; Laboratoire de Planétologie et Géosciences, Nantes Université, CNRS (UMR 6112), Nantes 44322, France.
  • Derr J; Laboratoire Reproduction et Développement des Plantes, Université de Lyon, École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1 (UCBL), Institut national de recherche pour l'agriculture, l'alimentation et l'environnement (INRAE), Institut national de recherche en informatique et en aut
  • Courrech du Pont S; Matière et Systèmes Complexes, Université Paris Cité, CNRS (UMR 7057), Paris 75013, France.
  • Berhanu M; Matière et Systèmes Complexes, Université Paris Cité, CNRS (UMR 7057), Paris 75013, France.
Proc Natl Acad Sci U S A ; 120(48): e2309379120, 2023 Nov 28.
Article em En | MEDLINE | ID: mdl-37988469
ABSTRACT
Chemical erosion, one of the two major erosion processes along with mechanical erosion, occurs when a soluble rock-like salt, gypsum, or limestone is dissolved in contact with a water flow. The coupling between the geometry of the rocks, the mass transfer, and the flow leads to the formation of remarkable patterns, like scallop patterns in caves. We emphasize the common presence of very sharp shapes and spikes, despite the diversity of hydrodynamic conditions and the nature of the soluble materials. We explain the generic emergence of such spikes in dissolution processes by a geometrical approach. Singularities at the interface emerge as a consequence of the erosion directed in the normal direction, when the surface displays curvature variations, like those associated with a dissolution pattern. First, we demonstrate the presence of singular structures in natural interfaces shaped by dissolution. Then, we propose simple surface evolution models of increasing complexity demonstrating the emergence of spikes and allowing us to explain at long term by coarsening the formation of cellular structures. Finally, we perform a dissolution pattern experiment driven by solutal convection, and we report the emergence of a cellular pattern following well the model predictions. Although the precise prediction of dissolution shapes necessitates performing a complete hydrodynamic study, we show that the characteristic spikes which are reported ultimately for dissolution shapes are explained generically by geometrical arguments due to the surface evolution. These findings can be applied to other ablation patterns, reported for example in melting ice.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article