Your browser doesn't support javascript.
loading
Development of an Optimized Process for Functional Recombinant SARS-CoV-2 Spike S1 Receptor-Binding Domain Protein Produced in the Baculovirus Expression Vector System.
Boumaiza, Mohamed; Chaabene, Ameni; Akrouti, Ines; Ben Zakour, Meriem; Askri, Hana; Salhi, Said; Ben Hamouda, Wafa; Marzouki, Soumaya; Benabdessalem, Chaouki; Ben Ahmed, Melika; Trabelsi, Khaled; Rourou, Samia.
Afiliação
  • Boumaiza M; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
  • Chaabene A; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
  • Akrouti I; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
  • Ben Zakour M; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
  • Askri H; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
  • Salhi S; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
  • Ben Hamouda W; Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT-02, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur. BP. 74, Tunis 1002, Tunisia.
  • Marzouki S; Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT-02, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur. BP. 74, Tunis 1002, Tunisia.
  • Benabdessalem C; Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT-02, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur. BP. 74, Tunis 1002, Tunisia.
  • Ben Ahmed M; Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), LR11IPT-02, Institut Pasteur de Tunis, Université Tunis El Manar, 13, Place Pasteur. BP. 74, Tunis 1002, Tunisia.
  • Trabelsi K; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
  • Rourou S; Laboratory of Molecular Microbiology, Vaccinology and Biotechnology Development, Group of Biotechnology Development, Institut Pasteur de Tunis, Université Tunis El Manar, Tunis 1002, Tunisia.
Trop Med Infect Dis ; 8(11)2023 Nov 16.
Article em En | MEDLINE | ID: mdl-37999620
ABSTRACT
To map the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) and evaluate immune response variations against this virus, it is essential to set up efficient serological tests locally. The SARS-CoV-2 immunogenic proteins were very expensive and not affordable for lower- middle-income countries (LMICs). For this purpose, the commonly used antigen, receptor-binding domain (RBD) of spike S1 protein (S1RBD), was produced using the baculovirus expression vector system (BEVS). In the current study, the expression of S1RBD was monitored using Western blot under different culture conditions. Different parameters were studied the multiplicity of infection (MOI), cell density at infection, and harvest time. Hence, optimal conditions for efficient S1RBD production were identified MOI 3; cell density at infection 2-3 × 106 cells/mL; and time post-infection (tPI or harvest time) of 72 h and 72-96 h, successively, for expression in shake flasks and a 7L bioreactor. A high production yield of S1RBD varying between 4 mg and 70 mg per liter of crude cell culture supernatant was achieved, respectively, in the shake flasks and 7L bioreactor. Moreover, the produced S1RBD showed an excellent antigenicity potential against COVID-19 (Wuhan strain) patient sera evaluated by Western blot. Thus, additional serological assays, such as in-house ELISA and seroprevalence studies based on the purified S1RDB, were developed.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article