Semi-mechanistic modeling of resistance development to ß-lactam and ß-lactamase-inhibitor combinations.
J Pharmacokinet Pharmacodyn
; 2023 Nov 26.
Article
em En
| MEDLINE
| ID: mdl-38008877
The use of ß-lactam (BL) and ß-lactamase inhibitor (BLI) combinations, such as piperacillin-tazobactam (PIP-TAZ) is an effective strategy to combat infections by extended-spectrum ß-lactamase-producing bacteria. However, in Gram-negative bacteria, resistance (both mutational and adaptive) to BL-BLI combination can still develop through multiple mechanisms. These mechanisms may include increased ß-lactamase activity, reduced drug influx, and increased drug efflux. Understanding the relative contribution of these mechanisms during resistance development helps identify the most impactful mechanism to target in designing a treatment to counter BL-BLI resistance. This study used semi-mechanistic mathematical modeling in combination with antibiotic sensitivity assays to assess the potential impact of different resistance mechanisms during the development of PIP-TAZ resistance in a Klebsiella pneumoniae isolate expressing CTX-M-15 and SHV-1 ß-lactamases. The mathematical models were used to evaluate the potential impact of several cellular changes as a sole mediator of PIP-TAZ resistance. Our semi-mechanistic model identified 2 out of the 13 inspected mechanisms as key resistance mechanisms that may independently support the observed magnitude of PIP-TAZ resistance, namely porin loss and efflux pump up-regulation. Simulation using the resulting models also suggested the possible adjustment of PIP-TAZ dose outside its commonly used 8:1 dosing ratio. The current study demonstrated how theory-based mechanistic models informed by experimental data can be used to support hypothesis generation regarding potential resistance mechanisms, which may guide subsequent experimental studies.
Texto completo:
1
Base de dados:
MEDLINE
Idioma:
En
Ano de publicação:
2023
Tipo de documento:
Article