Your browser doesn't support javascript.
loading
Microbial community assembly and functional profiles along the soil-root continuum of salt-tolerant Suaeda glauca and Suaeda salsa.
Tang, Luyao; Zhan, Le; Han, Yanan; Wang, Zhengran; Dong, Lei; Zhang, Zhong.
Afiliação
  • Tang L; School of Pharmacy, Weifang Medical University, Weifang, Shandong, China.
  • Zhan L; School of Pharmacy, Weifang Medical University, Weifang, Shandong, China.
  • Han Y; Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Key Laboratory of Antibody Medicines, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China.
  • Wang Z; School of Pharmacy, Weifang Medical University, Weifang, Shandong, China.
  • Dong L; School of Pharmacy, Weifang Medical University, Weifang, Shandong, China.
  • Zhang Z; Key Laboratory of Biological Medicines in Universities of Shandong Province, Weifang Key Laboratory of Antibody Medicines, School of Life Science and Technology, Weifang Medical University, Weifang, Shandong, China.
Front Plant Sci ; 14: 1301117, 2023.
Article em En | MEDLINE | ID: mdl-38046600
ABSTRACT
Developing and planting salt-tolerant plants has become a promising way to utilize saline-alkali land resources and ensure food security. Root-associated microbes of salt-tolerant plants have been shown to promote plant growth and alleviate high salt stress, yet very little is known about the salt resistance mechanisms of core microbes in different niches. This study characterized the microbial community structures, assembly processes, and functional profiles in four root-related compartments of two salt-tolerant plants by amplicon and shotgun metagenomic sequencing. The results showed that both plants significantly altered the microbial community structure of saline soils, with greater microbial alpha diversity in the rhizosphere or rhizoplane compared with bulk soils. Stochastic process dominated the microbial assembly processes, and the impact was stronger in Suaeda salsa than in S. glauca, indicating that S. salsa may have stronger resistance abilities to changing soil properties. Keystone species, such as Pseudomonas in the endosphere of S. glauca and Sphingomonas in the endosphere of S. salsa, which may play key roles in helping plants alleviate salt stress, were identified by using microbial co-occurrence network analysis. Furthermore, the microbiomes in the rhizoplane soils had more abundant genes involved in promoting growth of plants and defending against salt stress than those in bulk soils, especially in salt-tolerant S. salsa. Moreover, microbes in the rhizoplane of S. salsa exhibited higher functional diversities, with notable enrichment of genes involved in carbon fixation, dissimilar nitrate reduction to ammonium, and sulfite oxidation. These findings revealed differences and similarities in the microbial community assembly, functional profiles and keystone species closely related to salt alleviation of the two salt-tolerant plants. Overall, our study provides new insights into the ecological functions and varied strategies of rhizosphere microbes in different plants under salt stress and highlights the potential use of keystone microbes for enhancing salt resistance of plants.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article