Your browser doesn't support javascript.
loading
High-Stability RuNi/C Electrocatalyst for Efficient Hydrogen Oxidation Reaction in Alkaline Condition.
Fu, Xiaorui; Chen, Zanyu; Zhang, Shiyu; Wang, Jiajun; Ding, Jia; Han, Xiaopeng.
Afiliação
  • Fu X; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
  • Chen Z; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
  • Zhang S; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
  • Wang J; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
  • Ding J; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
  • Han X; School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300350, China.
Small ; : e2307725, 2023 Dec 06.
Article em En | MEDLINE | ID: mdl-38057130
ABSTRACT
The Ru-based catalyst for hydrogen oxidation reaction (HOR) with remarkable activity and reliability at high potential range remains a formidable challenge. Herein, the RuNi/C nanoparticles are customized, in which NiRu alloy is tightly wrapped with a carbon layer, delivering 2.2-fold and 8.3-fold enhancement in kinetic current density than that of commercial Pt/C and Ru/C, respectively. Notably, the current density maintains 2.93 mA cm-2 disk at 0.6 V vs RHE, which effectively improves the stability of Ru-based catalysts at high voltage. The NiRu alloy triggers electron redistribution between two metal elements and regulates the surface adsorption performance, coupled with a tightly wrapped outer carbon layer which is in situ formed with alloy as a good conductor of electronic and protection from the electrolyte. This work not only provides a novel electrocatalyst for efficient HOR with its potential for industrial application but also opens up a new avenue for designing highly active catalytic systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article