Your browser doesn't support javascript.
loading
Effect of runx2b deficiency in intermuscular bones on the regulatory network of lncRNA-miRNA-mRNA.
Xiao, Zhengyu; Chen, Yulong; Wang, Xudong; Sun, Qiujie; Tu, Tan; Liu, Junqi; Nie, Chunhong; Gao, Zexia.
Afiliação
  • Xiao Z; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
  • Chen Y; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
  • Wang X; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
  • Sun Q; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
  • Tu T; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
  • Liu J; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
  • Nie C; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
  • Gao Z; College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affairs/Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education/Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yang
Article em En | MEDLINE | ID: mdl-38103500
ABSTRACT
Intermuscular bones (IBs) are mineralized spicules that negatively impact the quality and value of fish products. Runx2b is a crucial modulator in promoting bone formation through regulating osteoblast differentiation. Previous studies suggested that loss of runx2b gene completely inhibited IBs formation in zebrafish. However, how the whole transcriptome, including mRNA and non-coding RNA (ncRNA), affects the IBs development in runx2b-/- zebrafish are not known. The aim of this study was to identify the regulatory networks of differentially expressed (DE) lncRNAs, miRNAs, and mRNAs in zebrafish with and without IBs (runx2b+/+ fish and runx2b-/- fish) utilizing high-throughput sequencing techniques. All together there are 1051 mRNAs, 456 lncRNAs, and 18 miRNAs differentially expressed were found between these two strains. The analysis of Kyoto Encyclopedia of Genes and Genomes (KEGG) has highlighted significant pathways linked to the development of IBs, specifically the TGF-beta and Wnt signaling pathways, and a number of genes concentrated on these two signaling pathways related to the formation of IBs. Further, 1989 competing endogenous RNA (ceRNA) networks were created according to the correlation among mRNAs, miRNAs and lncRNAs. The ceRNA networks results revealed 52 ceRNA pairs related to the IBs formation, consisting of 52 mRNAs, 37 lncRNAs, and 6 miRNAs. Of these, we found that dre-miR-2189 was the key element of ceRNA pairs, interacting with 19 mRNAs and 11 lncRNAs, and MSTRG.13175.1 could regulate sp7 expression by interacting with dre-miR-2189 to function in osteogenic differentiation. Subsequent experiments at the cellular level also revealed the interaction mechanism. The outcomes indicated a crucial role of miRNAs and lncRNAs in the development of fish IBs, which offer new views into the functions of ncRNAs involved in IBs formation.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: MicroRNAs / RNA Longo não Codificante Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: MicroRNAs / RNA Longo não Codificante Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article