Your browser doesn't support javascript.
loading
High-Throughput Designed and Laser-Etched NiFeCrVTi High-Entropy Alloys with High Catalytic Activities and Corrosion Resistance for Hydrogen Evolution in Seawater.
Liu, Zhaohui; Li, Huanxin; Yang, Chao; Jiang, Min; Zhang, Jiao; Fu, Chaopeng.
Afiliação
  • Liu Z; Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Li H; Department of Chemistry, Physical & Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QZ, UK.
  • Yang C; Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Jiang M; Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Zhang J; Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
  • Fu C; Shanghai Key Laboratory of Advanced High-temperature Materials and Precision Forming, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
Small ; 20(20): e2309078, 2024 May.
Article em En | MEDLINE | ID: mdl-38105404
ABSTRACT
Electrocatalytic hydrogen evolution from seawater through wind or solar energy is a cost-effective way to produce green hydrogen fuel. However, the lack of highly active and anti-corrosive electrocatalysts in seawater severely hinders the industrial application. Herein, a novel Ni1.1FeCr0.4V0.3Ti0.3 high-entropy alloy (HEA) is designed through high throughput computing and prepared via powder metallurgy with the surface treated by laser etching under different laser power. The laser-etched NiFeCrVTi high-entropy alloys exhibit a unique periodically ordered structure with multiple active centers and high porosity. The Ni-HEA-30 displays remarkable hydrogen evolution reaction (HER) performance with an overpotential of 55.9 mV and a Tafel slope of 47.3 mV dec-1 in seawater. Density functional theory (DFT) calculations are applied to identify the real active sites for HER on the HEA surface as the key factor for both proton and intermediate transformation, which also reveals that the Cr atom promotes the adsorption energy of water molecules, and the modulation of the electronic structure plays a crucial role in optimizing the hydrogen binding capabilities of the Ni atoms within the alloy. Additionally, the electrocatalyst displays high corrosion resistance in seawater, contributing to the good durability for hydrogen production. This work uncovers a new paradigm to develop novel electrocatalysts with superior reaction activity in seawater.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article