Your browser doesn't support javascript.
loading
New nitazoxanide derivatives: design, synthesis, biological evaluation, and molecular docking studies as antibacterial and antimycobacterial agents.
Saleh, Mahmoud; Mostafa, Yaser A; Kumari, Jyothi; Thabet, Momen M; Sriram, Dharmarajan; Kandeel, Mahmoud; Abdu-Allah, Hajjaj H M.
Afiliação
  • Saleh M; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt hajjaj@aun.edu.eg.
  • Mostafa YA; Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University Assiut 71526 Egypt hajjaj@aun.edu.eg.
  • Kumari J; Department of Pharmacy, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 India.
  • Thabet MM; Microbiology and Immunology Department, Faculty of Pharmacy, South Valley University Qena 83523 Egypt.
  • Sriram D; Department of Pharmacy, Birla Institute of Technology & Science-Pilani Hyderabad Campus, Jawahar Nagar Hyderabad-500 078 India.
  • Kandeel M; Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University 31982 Al-Ahsa Saudi Arabia.
  • Abdu-Allah HHM; Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University 33516 Kafrelsheikh Egypt.
RSC Med Chem ; 14(12): 2714-2730, 2023 Dec 13.
Article em En | MEDLINE | ID: mdl-38107181
ABSTRACT
A new series inspired by combining fragments from nitazoxanide (NTZ) and 4-aminosalicylic acid (4-ASA) was synthesized and screened for in vitro antibacterial and antimycobacterial activities. The majority showed higher antibacterial potency than NTZ against all the screened strains, notably, 5f, 5j, 5n and 5o with MICs of 0.87-9.00 µM. Compounds 5c, 5n and 5o revealed higher potency than ciprofloxacin against K. pneumoniae, while 5i was equipotent. For E. faecalis, 3b, 5j, and 5k showed higher potency than ciprofloxacin. 5j was more potent against P. aeruginosa than ciprofloxacin, while 5n was more potent against S. aureus with an MIC of 0.87 µM. 5f showed equipotency to ciprofloxacin against H. pylori with an MIC of 1.74 µM. Compounds 3a and 3b (4-azidoNTZ, MIC 4.47 µM) are 2 and 5-fold more potent against Mycobacterium tuberculosis (Mtb H37Rv) than NTZ (MIC 20.23 µM) and safer. 4-Azidation and/or acetylation of NTZ improve both activities, while introducing 1,2,3-triazoles improves the antibacterial activity. Molecular docking studies within pyruvate ferredoxin oxidoreductase (PFOR), glucosamine-6-phosphate synthase (G6PS) and dihydrofolate reductase (DHFR) active sites were performed to explore the possible molecular mechanisms of actions. Acceptable drug-likeness properties were found. This study may shed light on further rational design of substituted NTZ as broad-spectrum more potent antimicrobial candidates.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article