Your browser doesn't support javascript.
loading
Electrochemistry at the Edge of a van der Waals Heterostructure.
Plackic, Aleksandra; Neubert, Tilmann J; Patel, Kishan; Kuhl, Michel; Watanabe, Kenji; Taniguchi, Takashi; Zurutuza, Amaia; Sordan, Roman; Balasubramanian, Kannan.
Afiliação
  • Plackic A; L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy.
  • Neubert TJ; BioSense Institute, University of Novi Sad, Dr Zorana Dindica 1, Novi Sad, 21000, Serbia.
  • Patel K; School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
  • Kuhl M; L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy.
  • Watanabe K; School of Analytical Sciences Adlershof (SALSA), IRIS Adlershof & Department of Chemistry, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099, Berlin, Germany.
  • Taniguchi T; National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Zurutuza A; National Institute for Materials Science, 1-1 Namiki, Tsukuba, 305-0044, Japan.
  • Sordan R; Graphenea Semiconductor SLU, Mikeletegi Pasealekua 83, San Sebastián, 20009, Spain.
  • Balasubramanian K; L-NESS, Department of Physics, Politecnico di Milano, Via Anzani 42, Como, 22100, Italy.
Small ; 20(21): e2306361, 2024 May.
Article em En | MEDLINE | ID: mdl-38109121
ABSTRACT
Artificial van der Waals heterostructures, obtained by stacking two-dimensional (2D) materials, represent a novel platform for investigating physicochemical phenomena and applications. Here, the electrochemistry at the one-dimensional (1D) edge of a graphene sheet, sandwiched between two hexagonal boron nitride (hBN) flakes, is reported. When such an hBN/graphene/hBN heterostructure is immersed in a solution, the basal plane of graphene is encapsulated by hBN, and the graphene edge is exclusively available in the solution. This forms an electrochemical nanoelectrode, enabling the investigation of electron transfer using several redox probes, e.g., ferrocene(di)methanol, hexaammineruthenium, methylene blue, dopamine and ferrocyanide. The low capacitance of the van der Waals edge electrode facilitates cyclic voltammetry at very high scan rates (up to 1000 V s-1), allowing voltammetric detection of redox species down to micromolar concentrations with sub-second time resolution. The nanoband nature of the edge electrode allows operation in water without added electrolyte. Finally, two adjacent edge electrodes are realized in a redox-cycling format. All the above-mentioned phenomena can be investigated at the edge, demonstrating that nanoscale electrochemistry is a new application avenue for van der Waals heterostructures. Such an edge electrode will be useful for studying electron transfer mechanisms and the detection of analyte species in ultralow sample volumes.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article