Your browser doesn't support javascript.
loading
Unveiling the nitrogen and phosphorus removal potential: Comparative analysis of three coastal wetland plant species in lab-scale constructed wetlands.
Gao, Xiaoqing; Bi, Yuxin; Su, Lin; Lei, Ying; Gong, Lv; Dong, Xinhan; Li, Xiuzhen; Yan, Zhongzheng.
Afiliação
  • Gao X; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
  • Bi Y; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
  • Su L; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
  • Lei Y; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
  • Gong L; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
  • Dong X; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
  • Li X; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China.
  • Yan Z; State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, China. Electronic addr
J Environ Manage ; 351: 119864, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38109823
ABSTRACT
It is well accepted that tidal wetland vegetation performs a significant amount of water filtration for wetlands. However, there is currently little information on how various wetland plants remove nitrogen (N) and phosphorus (P) and how they differ in their denitrification processes. This study compared and investigated the denitrification and phosphorus removal effects of three typical wetland plants in the Yangtze River estuary wetland (Phragmites australis, Spartina alterniflora, and Scirpus mariqueter), as well as their relevant mechanisms, using an experimental laboratory-scale horizontal subsurface flow constructed wetland (CW). The results showed that all treatment groups with plants significantly reduced N pollutants as compared to the control group without plants. In comparison to S. mariqueter (77.2-83.2%), S. alterniflora and P. australis had a similar total nitrogen (TN)removal effectiveness of nearly 95%. With a removal effectiveness of over 99% for ammonium nitrogen (NH4+-N), P. australis outperformed S. alterniflora (95.6-96.8%) and S. mariqueter (94.6-96.5%). The removal of nitrite nitrogen (NO2--N)and nitrate nitrogen (NO3--N)from wastewater was significantly enhanced by S. alterniflora compared to the other treatment groups. Across all treatment groups, the removal rate of PO43--P was greater than 95%. P. australis and S. alterniflora considerably enriched more 15N than S. mariqueter, according to the results of the 15N isotope labeling experiment. While the rhizosphere and bulk sediments of S. alterniflora were enriched with more simultaneous desulfurization-denitrification bacterial genera (such as Paracoccus, Sulfurovum, and Sulfurimonas), which have denitrification functions, the rhizosphere and bulk sediments of P. australis were enriched with more ammonia-oxidizing archaea and ammonia-oxidizing bacteria. As a result, compared to the other plants, P. australis and S. alterniflora demonstrate substantially more significant ability to remove NH4+-N and NO2--N/NO3--N from simulated domestic wastewater.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Áreas Alagadas / Nitrogênio País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Áreas Alagadas / Nitrogênio País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article