Your browser doesn't support javascript.
loading
A Zinc Oxide Nanowire-Modified Mineralized Collagen Scaffold Promotes Infectious Bone Regeneration.
Zhang, Yixin; Li, Zixin; Guo, Bowen; Wang, Qibo; Chen, Liyuan; Zhu, Lisha; Zhang, Ting; Wang, Ruoxi; Li, Weiran; Luo, Dan; Liu, Yan.
Afiliação
  • Zhang Y; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Li Z; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Guo B; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
  • Wang Q; Department of Oral Implantology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Chen L; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Zhu L; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Zhang T; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Wang R; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Li W; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
  • Luo D; CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.
  • Liu Y; Department of Orthodontics, Central Laboratory, National Center for Stomatology, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, 100081, China.
Small ; 20(19): e2309230, 2024 May.
Article em En | MEDLINE | ID: mdl-38112271
ABSTRACT
Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Óxido de Zinco / Regeneração Óssea / Colágeno / Nanofios / Alicerces Teciduais / Células-Tronco Mesenquimais Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Osteogênese / Óxido de Zinco / Regeneração Óssea / Colágeno / Nanofios / Alicerces Teciduais / Células-Tronco Mesenquimais Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article