Your browser doesn't support javascript.
loading
Stable blue phosphorescent organic LEDs that use polariton-enhanced Purcell effects.
Zhao, Haonan; Arneson, Claire E; Fan, Dejiu; Forrest, Stephen R.
Afiliação
  • Zhao H; Department of Physics, University of Michigan, Ann Arbor, MI, USA.
  • Arneson CE; Department of Physics, University of Michigan, Ann Arbor, MI, USA.
  • Fan D; Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, USA.
  • Forrest SR; Department of Physics, University of Michigan, Ann Arbor, MI, USA. stevefor@umich.edu.
Nature ; 626(7998): 300-305, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38122821
ABSTRACT
Phosphorescent organic light-emitting diodes (PHOLEDs) feature high efficiency1,2, brightness and colour tunability suitable for both display and lighting applications3. However, overcoming the short operational lifetime of blue PHOLEDs remains one of the most challenging high-value problems in the field of organic electronics. Their short lifetimes originate from the annihilation of high-energy, long-lived blue triplets that leads to molecular dissociation4-7. The Purcell effect, the enhancement of the radiative decay rate in a microcavity, can reduce the triplet density and, hence, the probability of destructive high-energy triplet-polaron annihilation (TPA)5,6 and triplet-triplet annihilation (TTA) events4,5,7,8. Here we introduce the polariton-enhanced Purcell effect in blue PHOLEDs. We find that plasmon-exciton polaritons9 (PEPs) substantially increase the strength of the Purcell effect and achieve an average Purcell factor (PF) of 2.4 ± 0.2 over a 50-nm-thick emission layer (EML) in a blue PHOLED. A 5.3-fold improvement in LT90 (the time for the PHOLED luminance to decay to 90% of its initial value) of a cyan-emitting Ir-complex device is achieved compared with its use in a conventional PHOLED. Shifting the chromaticity coordinates to (0.14, 0.14) and (0.15, 0.20) into the deep blue, the Purcell-enhanced devices achieve 10-14 times improvement over similarly deep-blue PHOLEDs, with one structure reaching the longest Ir-complex device lifetime of LT90 = 140 ± 20 h reported so far10-21. The polariton-enhanced Purcell effect and microcavity engineering provide new possibilities for extending deep-blue PHOLED lifetimes.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article