Your browser doesn't support javascript.
loading
Quorum Quenching with a Diffusible Signal Factor Analog in Stenotrophomonas maltophilia.
Guillén-Navarro, Dafne; González-Vázquez, Rosa; León-Ávila, Gloria; Giono-Cerezo, Silvia.
Afiliação
  • Guillén-Navarro D; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico.
  • González-Vázquez R; Posgrado en Ciencias Quimicobiológicas, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico.
  • León-Ávila G; Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Departamento de Microbiología, Prolongación de Carpio y Plan de Ayala S/N, Col. Casco de Santo Tomás, Alcaldía Miguel Hidalgo, Mexico City 11340, Mexico.
  • Giono-Cerezo S; Instituto Mexicano del Seguro Social, Unidad Médica de Alta Especialidad, Hospital de Especialidades "Dr. Antonio Fraga Mouret", Centro Médico Nacional La Raza. Seris y Zaachila S/N, Col. La Raza, Alcaldía Azcapotzalco, Mexico City 04960, Mexico.
Pathogens ; 12(12)2023 Dec 14.
Article em En | MEDLINE | ID: mdl-38133331
ABSTRACT
Stenotrophomonas maltophilia is a multidrug-resistant Gram-negative bacillus associated with nosocomial infections in intensive care units, and nowadays, its acquired resistance to trimethoprim-sulfamethoxazole (SXT) by sul genes within class 1 integrons is a worldwide health problem. Biofilm and motility are two of the major virulence factors in this bacterium and are auto-induced by the diffusible signal factor (DSF). In recent studies, retinoids have been used to inhibit (Quorum Quenching) these virulence factors and for their antimicrobial effect. The aim was to reduce biofilm formation and motility with retinoic acid (RA) in S. maltophilia SXT-resistant strains. Eleven SXT-resistant strains and two SXT-susceptible strains were tested for biofilm formation/reduction and planktonic/sessile cell viability with RA and SXT-MIC50/RA; motility (twitching, swimming, swarming) was measured with/without RA; and MLST typing was determined. The biofilm formation of the strains was classified as follows 15.38% (2/13) as low, 61.54% (8/13) as moderate, and 23.08% (3/13) as high. It was significantly reduced with RA and SXT-MIC50/RA (p < 0.05); cell viability was not significantly reduced with RA (p > 0.05), but it was with SXT-MIC50/RA (p < 0.05); and swimming (p < 0.05) and swarming (p < 0.05) decreased significantly. MLST typing showed the first and novel strains of Mexican S. maltophilia registered in PubMLST (ST479-485, ST497, ST23, ST122, ST175, ST212, and ST300). In conclusion, RA reduced biofilm formation and motility without affecting cell viability; furthermore, antimicrobial synergism with SXT-MIC50/RA in different and novel STs of S. maltophilia was observed.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article