Your browser doesn't support javascript.
loading
Multiplexed Surface Electrode Arrays Based on Metal Oxide Thin-Film Electronics for High-Resolution Cortical Mapping.
Londoño-Ramírez, Horacio; Huang, Xiaohua; Cools, Jordi; Chrzanowska, Anna; Brunner, Clément; Ballini, Marco; Hoffman, Luis; Steudel, Soeren; Rolin, Cédric; Mora Lopez, Carolina; Genoe, Jan; Haesler, Sebastian.
Afiliação
  • Londoño-Ramírez H; Department of Neuroscience, Leuven Brain Institute, Katholieke Universiteit (KU) Leuven, Leuven, 3001, Belgium.
  • Huang X; Neuroelectronics Research Flanders (NERF), Leuven, 3001, Belgium.
  • Cools J; imec, Leuven, 3001, Belgium.
  • Chrzanowska A; Flanders Institute for Biotechnology (VIB), Gent, 9052, Belgium.
  • Brunner C; imec, Leuven, 3001, Belgium.
  • Ballini M; Department of Electrical Engineering (ESAT), Katholieke Universiteit (KU) Leuven, Leuven, 3001, Belgium.
  • Hoffman L; Neuroelectronics Research Flanders (NERF), Leuven, 3001, Belgium.
  • Steudel S; imec, Leuven, 3001, Belgium.
  • Rolin C; Flanders Institute for Biotechnology (VIB), Gent, 9052, Belgium.
  • Mora Lopez C; Neuroelectronics Research Flanders (NERF), Leuven, 3001, Belgium.
  • Genoe J; Flanders Institute for Biotechnology (VIB), Gent, 9052, Belgium.
  • Haesler S; Department of Biology, Katholieke Universiteit (KU) Leuven, Leuven, 3001, Belgium.
Adv Sci (Weinh) ; 11(10): e2308507, 2024 03.
Article em En | MEDLINE | ID: mdl-38145348
ABSTRACT
Electrode grids are used in neuroscience research and clinical practice to record electrical activity from the surface of the brain. However, existing passive electrocorticography (ECoG) technologies are unable to offer both high spatial resolution and wide cortical coverage, while ensuring a compact acquisition system. The electrode count and density are restricted by the fact that each electrode must be individually wired. This work presents an active micro-electrocorticography (µECoG) implant that tackles this limitation by incorporating metal oxide thin-film transistors (TFTs) into a flexible electrode array, allowing to address multiple electrodes through a single shared readout line. By combining the array with an incremental-ΔΣ readout integrated circuit (ROIC), the system is capable of recording from up to 256 electrodes virtually simultaneously, thanks to the implemented 161 time-division multiplexing scheme, offering lower noise levels than existing active µECoG arrays. In vivo validation is demonstrated acutely in mice by recording spontaneous activity and somatosensory evoked potentials over a cortical surface of ≈8×8 mm2 . The proposed neural interface overcomes the wiring bottleneck limiting ECoG arrays, holding promise as a powerful tool for improved mapping of the cerebral cortex and as an enabling technology for future brain-machine interfaces.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Córtex Cerebral Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Mapeamento Encefálico / Córtex Cerebral Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article