Your browser doesn't support javascript.
loading
Ultrafast Laser-Induced Dynamics of Non-Equilibrium Electron Spill-Out in Nanoplasmonic Bilayers.
Avdizhiyan, Artur; Janus, Weronika; Szpytma, Marcin; Slezak, Tomasz; Przybylski, Marek; Chrobak, Maciej; Roddatis, Vladimir; Stupakiewicz, Andrzej; Razdolski, Ilya.
Afiliação
  • Avdizhiyan A; Faculty of Physics, University of Bialystok, 15-245 Bialystok, Poland.
  • Janus W; Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Kraków, Poland.
  • Szpytma M; Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Kraków, Poland.
  • Slezak T; Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Kraków, Poland.
  • Przybylski M; Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Kraków, Poland.
  • Chrobak M; Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Kraków, Poland.
  • Roddatis V; Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Kraków, Poland.
  • Stupakiewicz A; Helmholtz Centre Potsdam, Telegrafenberg, D-14473 Potsdam, Germany.
  • Razdolski I; Faculty of Physics, University of Bialystok, 15-245 Bialystok, Poland.
Nano Lett ; 24(1): 466-471, 2024 Jan 10.
Article em En | MEDLINE | ID: mdl-38150569
ABSTRACT
Contemporary quantum plasmonics capture subtle corrections to the properties of plasmonic nano-objects in equilibrium. Here, we demonstrate non-equilibrium spill-out redistribution of the electronic density at the ultrafast time scale. As revealed by time-resolved 2D spectroscopy of nanoplasmonic Fe/Au bilayers, an injection of the laser-excited non-thermal electrons induces transient electron spill-out thus changing the plasma frequency. The response of the local electronic density switches the electronic density behavior from spill-in to strong (an order of magnitude larger) spill-out at the femtosecond time scale. The superdiffusive transport of hot electrons and the lack of a direct laser heating indicate significantly non-thermal origin of the underlying physics. Our results demonstrate an ultrafast and non-thermal way to control surface plasmon dispersion through transient variations of the spatial electron distribution at the nanoscale. These findings expand quantum plasmonics into previously unexplored directions by introducing ultrashort time scales in the non-equilibrium electronic systems.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article