Your browser doesn't support javascript.
loading
Nogo-A neutralization in the central nervous system with a blood-brain barrier-penetrating antibody.
Joly, Sandrine; Augusto, Gilles; Mdzomba, Baya; Meli, Ivo; Vogel, Monique; Chan, Andrew; Pernet, Vincent.
Afiliação
  • Joly S; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Switzerland; Centre de recherche du CHU de Québec-Université Laval and Department of Molecular Medicine, Faculté de
  • Augusto G; Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
  • Mdzomba B; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland.
  • Meli I; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland.
  • Vogel M; Department of Biomedical Research, University of Bern, Bern, Switzerland; Department of Immunology, Inselspital, Bern University Hospital, University of Bern, Switzerland.
  • Chan A; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Switzerland; Department of Biomedical Research, University of Bern, Bern, Switzerland.
  • Pernet V; Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland; Center for experimental neurology (ZEN), Bern University Hospital, University of Bern, Switzerland; Centre de recherche du CHU de Québec-Université Laval and Department of Molecular Medicine, Faculté de
J Control Release ; 366: 52-64, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38154541
ABSTRACT
The poor penetration of monoclonal antibodies (mAb) across the blood-brain barrier (BBB) impedes the development of regenerative therapies for neurological diseases. For example, Nogo-A is a myelin-associated protein highly expressed in the central nervous system (CNS) whose inhibitory effects on neuronal plasticity can be neutralized with direct administration of 11C7 mAb in CNS tissues/fluids, but not with peripheral administrations such as intravenous injections. Therefore, in the present study, we engineered a CNS-penetrating antibody against Nogo-A by combining 11C7 mAb and the single-chain variable fragment (scFv) of 8D3, a rat antibody binding transferrin receptor 1 (TfR) and mediating BBB transcytosis (11C7-scFv8D3). The binding of 11C7-scFv8D3 to Nogo-A and to TfR/CD71 was validated by capture ELISA and Biolayer Interferometry. After intravenous injection in mice, capture ELISA measurements revealed fast plasma clearance of 11C7-scFv8D3 concomitantly with brain and spinal cord accumulation at levels up to 19 fold as high as those of original 11C7 mAb. 11C7-scFv8D3 detection in the parenchyma indicated effective blood-to-CNS transfer. A single dose of 11C7-scFv8D3 induced stronger activation of the growth-promoting AkT/mTOR/S6 signaling pathway than 11C7 mAb or control antibody. Taken together, our results show that BBB-crossing 11C7-scFv8D3 engages Nogo-A in the mouse CNS and stimulates neuronal growth mechanisms.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Anticorpos Monoclonais Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Barreira Hematoencefálica / Anticorpos Monoclonais Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article