Your browser doesn't support javascript.
loading
Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium.
Valentini, Marco; Sagi, Oliver; Baghumyan, Levon; de Gijsel, Thijs; Jung, Jason; Calcaterra, Stefano; Ballabio, Andrea; Aguilera Servin, Juan; Aggarwal, Kushagra; Janik, Marian; Adletzberger, Thomas; Seoane Souto, Rubén; Leijnse, Martin; Danon, Jeroen; Schrade, Constantin; Bakkers, Erik; Chrastina, Daniel; Isella, Giovanni; Katsaros, Georgios.
Afiliação
  • Valentini M; Institute of Science and Technology Austria, Klosterneuburg, Austria. marco.valentini@ist.ac.at.
  • Sagi O; Institute of Science and Technology Austria, Klosterneuburg, Austria.
  • Baghumyan L; Institute of Science and Technology Austria, Klosterneuburg, Austria.
  • de Gijsel T; Institute of Science and Technology Austria, Klosterneuburg, Austria.
  • Jung J; Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
  • Calcaterra S; Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
  • Ballabio A; L-NESS, Physics Department, Politecnico di Milano, Como, Italy.
  • Aguilera Servin J; L-NESS, Physics Department, Politecnico di Milano, Como, Italy.
  • Aggarwal K; Institute of Science and Technology Austria, Klosterneuburg, Austria.
  • Janik M; Institute of Science and Technology Austria, Klosterneuburg, Austria.
  • Adletzberger T; Department of Materials, University of Oxford, Oxford, UK.
  • Seoane Souto R; Institute of Science and Technology Austria, Klosterneuburg, Austria.
  • Leijnse M; Institute of Science and Technology Austria, Klosterneuburg, Austria.
  • Danon J; Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.
  • Schrade C; Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas (ICMM-CSIC), Madrid, Spain.
  • Bakkers E; NanoLund and Solid State Physics, Lund University, Lund, Sweden.
  • Chrastina D; Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway.
  • Isella G; Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Louisiana State University, Baton Rouge, USA.
  • Katsaros G; Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.
Nat Commun ; 15(1): 169, 2024 Jan 02.
Article em En | MEDLINE | ID: mdl-38167818
ABSTRACT
Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a [Formula see text] CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on  the same silicon technology compatible platform.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article