Your browser doesn't support javascript.
loading
Recessive TMOD1 mutation causes childhood cardiomyopathy.
Vasilescu, Catalina; Colpan, Mert; Ojala, Tiina H; Manninen, Tuula; Mutka, Aino; Ylänen, Kaisa; Rahkonen, Otto; Poutanen, Tuija; Martelius, Laura; Kumari, Reena; Hinterding, Helena; Brilhante, Virginia; Ojanen, Simo; Lappalainen, Pekka; Koskenvuo, Juha; Carroll, Christopher J; Fowler, Velia M; Gregorio, Carol C; Suomalainen, Anu.
Afiliação
  • Vasilescu C; Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
  • Colpan M; Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA.
  • Ojala TH; Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland.
  • Manninen T; Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
  • Mutka A; Department of Pathology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland.
  • Ylänen K; Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland.
  • Rahkonen O; Department of Pediatric Cardiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland.
  • Poutanen T; Tampere Center for Child, Adolescent and Maternal Health Research, Faculty of Medicine and Health Technology, Tampere University and University Hospital, 33521, Tampere, Finland.
  • Martelius L; Department of Pediatric Radiology, Helsinki University Hospital and University of Helsinki, 00290, Helsinki, Finland.
  • Kumari R; HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.
  • Hinterding H; Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
  • Brilhante V; Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
  • Ojanen S; Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
  • Lappalainen P; HiLIFE Institute of Biotechnology, University of Helsinki, 00014, Helsinki, Finland.
  • Koskenvuo J; Blueprint Genetics, 00290, Helsinki, Finland.
  • Carroll CJ; Research Programs Unit, Stem Cells and Metabolism, Biomedicum-Helsinki, University of Helsinki, 00290, Helsinki, Finland.
  • Fowler VM; Molecular and Clinical Sciences, St. George's, University of London, London, United Kingdom.
  • Gregorio CC; Department of Biological Sciences, University of Delaware, Newark, DE, 19711, USA.
  • Suomalainen A; Department of Cellular and Molecular Medicine and Sarver Molecular Cardiovascular Research Program, The University of Arizona, Tucson, AZ, 85724, USA. carol.gregorio@mssm.edu.
Commun Biol ; 7(1): 7, 2024 01 02.
Article em En | MEDLINE | ID: mdl-38168645
ABSTRACT
Familial cardiomyopathy in pediatric stages is a poorly understood presentation of heart disease in children that is attributed to pathogenic mutations. Through exome sequencing, we report a homozygous variant in tropomodulin 1 (TMOD1; c.565C>T, p.R189W) in three individuals from two unrelated families with childhood-onset dilated and restrictive cardiomyopathy. To decipher the mechanism of pathogenicity of the R189W mutation in TMOD1, we utilized a wide array of methods, including protein analyses, biochemistry and cultured cardiomyocytes. Structural modeling revealed potential defects in the local folding of TMOD1R189W and its affinity for actin. Cardiomyocytes expressing GFP-TMOD1R189W demonstrated longer thin filaments than GFP-TMOD1wt-expressing cells, resulting in compromised filament length regulation. Furthermore, TMOD1R189W showed weakened activity in capping actin filament pointed ends, providing direct evidence for the variant's effect on actin filament length regulation. Our data indicate that the p.R189W variant in TMOD1 has altered biochemical properties and reveals a unique mechanism for childhood-onset cardiomyopathy.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citoesqueleto de Actina / Cardiomiopatias Tipo de estudo: Etiology_studies Limite: Child / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Citoesqueleto de Actina / Cardiomiopatias Tipo de estudo: Etiology_studies Limite: Child / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article