Your browser doesn't support javascript.
loading
Room-temperature quantum coherence of entangled multiexcitons in a metal-organic framework.
Yamauchi, Akio; Tanaka, Kentaro; Fuki, Masaaki; Fujiwara, Saiya; Kimizuka, Nobuo; Ryu, Tomohiro; Saigo, Masaki; Onda, Ken; Kusumoto, Ryota; Ueno, Nami; Sato, Harumi; Kobori, Yasuhiro; Miyata, Kiyoshi; Yanai, Nobuhiro.
Afiliação
  • Yamauchi A; Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
  • Tanaka K; Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
  • Fuki M; Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
  • Fujiwara S; CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan.
  • Kimizuka N; RIKEN, RIKEN Center for Emergent Matter Science, Wako, Saitama 351-0198, Japan.
  • Ryu T; Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
  • Saigo M; Center for Molecular Systems (CMS), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
  • Onda K; Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
  • Kusumoto R; Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
  • Ueno N; Department of Chemistry, Graduate School of Science, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
  • Sato H; Department of Chemistry, Graduate School of Science, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
  • Kobori Y; Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan.
  • Miyata K; Graduate School of Human Development and Environment, Kobe University, 3-11 Tsurukabuto, Nada, Kobe 657-8501, Japan.
  • Yanai N; Molecular Photoscience Research Center, Kobe University, 1-1, Rokkodai-cho, Nada-ku, Kobe 657-8501, Japan.
Sci Adv ; 10(1): eadi3147, 2024 Jan 05.
Article em En | MEDLINE | ID: mdl-38170775
ABSTRACT
Singlet fission can generate an exchange-coupled quintet triplet pair state 5TT, which could lead to the realization of quantum computing and quantum sensing using entangled multiple qubits even at room temperature. However, the observation of the quantum coherence of 5TT has been limited to cryogenic temperatures, and the fundamental question is what kind of material design will enable its room-temperature quantum coherence. Here, we show that the quantum coherence of singlet fission-derived 5TT in a chromophore-integrated metal-organic framework can be over hundred nanoseconds at room temperature. The suppressed motion of the chromophores in ordered domains within the metal-organic framework leads to the enough fluctuation of the exchange interaction necessary for 5TT generation but, at the same time, does not cause severe 5TT decoherence. Furthermore, the phase and amplitude of quantum beating depend on the molecular motion, opening the way to room-temperature molecular quantum computing based on multiple quantum gate control.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article