Your browser doesn't support javascript.
loading
Texture characterization and classification of polarized images based on multi-angle orthogonal difference.
Opt Express ; 31(26): 44455-44473, 2023 Dec 18.
Article em En | MEDLINE | ID: mdl-38178516
ABSTRACT
The Local Binary Pattern (LBP) and its variants are capable of extracting image texture and have been successfully applied to classification. However, LBP has not been used to extract and describe the texture of polarized images, and simple LBP cannot characterize the polarized texture information from different polarizations of angles. In order to solve these problems, we propose a new multi-angle orthogonal difference polarization image texture descriptor (MODP_ITD) by analyzing the relationship between the difference of orthogonal difference polarization images from different angles and the pixel intensity distribution in the local neighborhood of images from different angles. The MODP_ITD consists of three patterns multi-angle polarization orthogonal difference local binary pattern (MODP_LBP), multi-angle polarization orthogonal difference local sampling point principal component sequence pattern (MODP_LPCSP) and multi-angle orthogonal difference polarization local difference binary pattern (MODP_LDBP). The MODP_LBP extracts local corresponding texture characteristics of polarized orthogonal difference images from multiple angles. The MODP_LPCSP sorts the principal component order of each angle orthogonal difference local sampling point. The MODP LDBP extracts the local difference characteristics between different angles by constructing a new polarized image. Then, the frequency histograms of MODP_LBP, MOD_LPCSP ,and MODP_LDBP are cascaded to generate MODP_ITD, so as to distinguish local neighborhoods. By using vertical and parallel polarization and unpolarized light active illumination, combined with the measurements at three different detection zenith angles, we constructed a polarization texture image database. A substantial number of experimental results on the self-built database show that our proposed MODP_ITD can represent the detailed information of polarization images texture. In addition, compared with the existing LBP methods, The MODP_ITD has a competitive advantage in classification accuracy.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2023 Tipo de documento: Article