Your browser doesn't support javascript.
loading
Electrostatic Potential of Functional Cations as a Predictor of Hydroxide Diffusion Pathways in Nanoconfined Environments of Anion Exchange Membranes.
Zelovich, Tamar; Dekel, Dario R; Tuckerman, Mark E.
Afiliação
  • Zelovich T; Department of Chemistry, New York University (NYU), New York, New York 10003, United States.
  • Dekel DR; Wolfson Department of Chemical Engineering, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
  • Tuckerman ME; Nancy & Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
J Phys Chem Lett ; 15(2): 408-415, 2024 Jan 18.
Article em En | MEDLINE | ID: mdl-38179916
ABSTRACT
Nanoconfined anion exchange membranes (AEMs) play a vital role in emerging electrochemical technologies. The ability to control dominant hydroxide diffusion pathways is an important goal in the design of nanoconfined AEMs. Such control can shorten hydroxide transport pathways between electrodes, reduce transport resistance, and enhance device performance. In this work, we propose an electrostatic potential (ESP) approach to explore the effect of the polymer electrolyte cation spacing on hydroxide diffusion pathways from a molecular perspective. By exploring cation ESP energy surfaces and validating outcomes through prior ab initio molecular dynamics simulations of nanoconfined AEMs, we find that we can achieve control over preferred hydroxide diffusion pathways by adjusting the cation spacing. The results presented in this work provide a unique and straightforward approach to predict preferential hydroxide diffusion pathways, enabling efficient design of highly conductive nanoconfined AEM materials for electrochemical technologies.

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Tipo de estudo: Prognostic_studies / Risk_factors_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article