Your browser doesn't support javascript.
loading
Label-Free and Real-Time Optical Detection of Affinity Binding of the Antibody on Adherent Live Cells.
Li, Xiaoyi; Wu, Shiming; Feng, Zhihao; Ning, Ke; Ji, Dandan; Yu, Ling; Hu, Weihua.
Afiliação
  • Li X; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China.
  • Wu S; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China.
  • Feng Z; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China.
  • Ning K; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China.
  • Ji D; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China.
  • Yu L; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China.
  • Hu W; Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Materials and Energy, Chongqing Key Laboratory for Advanced Materials and Technologies of Clean Energies, Southwest University, Chongqing 400715, P. R. China.
Anal Chem ; 96(3): 1112-1120, 2024 01 23.
Article em En | MEDLINE | ID: mdl-38181398
ABSTRACT
Oblique-incidence reflectivity difference (OIRD) is a novel real-time, label-free, and nondestructive optical detection method and exhibits encouraging application in the detection of antibody/DNA microarrays. In this study, for the first time, an OIRD label-free immunoassay was achieved by using adherent live cells as the probe. The cells were cultured on glass cells, and the affinity binding of antibodies targeted on the HLA class I antigen of the cell surface was detected with an OIRD. The results show that an OIRD is able to detect the binding process of anti-human HLA-A, B, and C antibodies on MDA-MB-231 cells and HUVEC cells. Control experiments and complementary fluorescence analysis confirmed the high detection specificity and good quantitative virtue of the OIRD label-free immunoassay. Label-free OIRD imaging analysis of cell microarrays was further demonstrated successfully, and the underlying optical mechanism was revealed by combining the theoretical modeling. This work explores the use of live cells as probes for an OIRD immunoassay, thus expanding the potential applications of the OIRD in the field of pathological analysis, disease diagnosis, and drug screening, among others.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vidro / Anticorpos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Vidro / Anticorpos Tipo de estudo: Diagnostic_studies Idioma: En Ano de publicação: 2024 Tipo de documento: Article