Your browser doesn't support javascript.
loading
Environmental fate and health risks of polycyclic aromatic hydrocarbons in the Yangtze River Delta Urban Agglomeration during the 21st century.
Nie, Ning; Li, Ting; Miao, Yiyi; Wei, Xinyi; Zhao, Dengzhong; Liu, Min.
Afiliação
  • Nie N; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources,
  • Li T; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources,
  • Miao Y; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources,
  • Wei X; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources,
  • Zhao D; Changjiang River Scientific Research Institute, Wuhan 430010, China.
  • Liu M; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China; Key Laboratory of Spatial-temporal Big Data Analysis and Application of Natural Resources in Megacities, Ministry of Natural Resources,
J Hazard Mater ; 465: 133407, 2024 03 05.
Article em En | MEDLINE | ID: mdl-38185085
ABSTRACT
Understanding the spatiotemporal distribution and behavior of Polycyclic Aromatic Hydrocarbons (PAHs) in the context of climate change and human activities is essential for effective environmental management and public health protection. This study utilized an integrated simulation system that combines land-use, hydrological, and multimedia fugacity models to predict the concentrations, transportation, and degradation of 16 priority-controlled PAHs across six environmental compartments (air, water, soil, sediment, vegetation, and impermeable surfaces) within one of the world's prominent urban agglomerations, the Yangtze River Delta Urban Agglomeration (YRDUA), under future Shared Socio-economic Pathways (SSP)-Representative Concentration Pathways (RCP) scenarios. Incremental lifetime carcinogenic risk for adults and children exposed to PAHs were also evaluated. The results show a declining trend in PAHs concentrations and associated health risks during the 21st century. Land use types, hydrological characteristics, population, and GDP, have significant correlations with the fate of PAHs. The primary removal for PAHs is determined to be driven by advection through air and water. PAHs covering on impermeable surfaces pose a relatively higher health risk compared to those in other environmental media. This study offers valuable insights into PAHs pollution in the YRDUA, aiming to ensure public health safety, with the potential for application in other urban areas.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Monitoramento Ambiental Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Child / Humans País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Hidrocarbonetos Policíclicos Aromáticos / Monitoramento Ambiental Tipo de estudo: Etiology_studies / Prognostic_studies / Risk_factors_studies Limite: Adult / Child / Humans País como assunto: Asia Idioma: En Ano de publicação: 2024 Tipo de documento: Article