Your browser doesn't support javascript.
loading
A ROS-responsive microsphere capsule encapsulated with NADPH oxidase 4 inhibitor ameliorates macrophage inflammation and ferroptosis.
Zhen, Jinze; Wan, Tianhao; Sun, Guangxin; Chen, Xinwei; Zhang, Shanyong.
Afiliação
  • Zhen J; Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shangha
  • Wan T; Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shangha
  • Sun G; Department of Oral and Maxillofacial Surgery, School of Stomatology, China Medical University, Oral Diseases Laboratory of Liaoning, Shenyang, 110000, China.
  • Chen X; Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shangha
  • Zhang S; Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shangha
Heliyon ; 10(1): e23589, 2024 Jan 15.
Article em En | MEDLINE | ID: mdl-38187270
ABSTRACT
Inflammatory macrophages within the synovium play a pivotal role in the progression of arthritis inflammation. Effective drug therapy targeting inflammatory macrophages has long been a goal for clinicians and researchers. The standard approach for treating osteoarthritis (OA) involves systemic treatment and local injection. However, the high incidence of side effects associated with long-term drug administration increases the risk of complications in patients. Additionally, the rapid clearance of the joint cavity poses a biological barrier to the therapeutic effect. NADPH oxidase 4 (NOX4) is an enzyme protein regulating the cellular redox state by generating reactive oxygen species (ROS) within the cell. In this study, we designed and fabricated a hydrogel microsphere consisting of methyl methacrylate (MMA) and polyvinyl acetate (PVA) as the outer layer structure. We then loaded GLX351322 (GLX), a novel selective NOX4 inhibitor, into hydrogel microspheres through self-assembly with the compound polyethylene glycol ketone mercaptan (mPEG-TK) containing a disulfide bond, forming nanoparticles (mPEG-TK-GLX), thus creating a two-layer drug-loaded microspheres capsule with ROS-responsive and slow-releasing capabilities. Our results demonstrate that mPEG-TK-GLX@PVA-MMA effectively suppressed TBHP-induced inflammation, ROS production, and ferroptosis, indicating a promising curative strategy for OA and other inflammatory diseases in the future.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article