Your browser doesn't support javascript.
loading
Two Receptor Binding Strategy of SARS-CoV-2 Is Mediated by Both the N-Terminal and Receptor-Binding Spike Domain.
Monti, Michele; Milanetti, Edoardo; Frans, Myrthe T; Miotto, Mattia; Di Rienzo, Lorenzo; Baranov, Maksim V; Gosti, Giorgio; Somavarapu, Arun Kumar; Nagaraj, Madhu; Golbek, Thaddeus W; Rossing, Emiel; Moons, Sam J; Boltje, Thomas J; van den Bogaart, Geert; Weidner, Tobias; Otzen, Daniel E; Tartaglia, Gian Gaetano; Ruocco, Giancarlo; Roeters, Steven J.
Afiliação
  • Monti M; RNA Systems Biology, Centre for Human Technologies (CHT), Istituto Italiano di Tecnologia (IIT), Via Enrico Melen, 83, 16152 Genova, Italy.
  • Milanetti E; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
  • Frans MT; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
  • Miotto M; Department of Physics, Sapienza University, Piazzale Aldo Moro 5, 00185 Rome, Italy.
  • Di Rienzo L; Molecular Immunology─Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
  • Baranov MV; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
  • Gosti G; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
  • Somavarapu AK; Molecular Immunology─Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
  • Nagaraj M; Center for Life Nanoscience, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy.
  • Golbek TW; DHILab, Istituto di Scienze del Patrimonio Culturale, Sede di Roma, Consiglio Nazionale delle Ricerche, Via Salaria km, 29300, 00010 Rome, Italy.
  • Rossing E; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
  • Moons SJ; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
  • Boltje TJ; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
  • van den Bogaart G; Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
  • Weidner T; Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
  • Otzen DE; Synthetic Organic Chemistry, Radboud University Nijmegen, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
  • Tartaglia GG; Molecular Immunology─Groningen Biomolecular Sciences and Biotechnology, Nijenborgh 7, 9747 AG Groningen, The Netherlands.
  • Ruocco G; Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark.
  • Roeters SJ; Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus C, Denmark.
J Phys Chem B ; 128(2): 451-464, 2024 Jan 18.
Article em En | MEDLINE | ID: mdl-38190651
ABSTRACT
It is not well understood why severe acute respiratory syndrome (SARS)-CoV-2 spreads much faster than other ß-coronaviruses such as SARS-CoV and Middle East respiratory syndrome (MERS)-CoV. In a previous publication, we predicted the binding of the N-terminal domain (NTD) of SARS-CoV-2 spike to sialic acids (SAs). Here, we experimentally validate this interaction and present simulations that reveal a second possible interaction between SAs and the spike protein via a binding site located in the receptor-binding domain (RBD). The predictions from molecular-dynamics simulations and the previously-published 2D-Zernike binding-site recognition approach were validated through flow-induced dispersion analysis (FIDA)─which reveals the capability of the SARS-CoV-2 spike to bind to SA-containing (glyco)lipid vesicles, and flow-cytometry measurements─which show that spike binding is strongly decreased upon inhibition of SA expression on the membranes of angiotensin converting enzyme-2 (ACE2)-expressing HEK cells. Our analyses reveal that the SA binding of the NTD and RBD strongly enhances the infection-inducing ACE2 binding. Altogether, our work provides in silico, in vitro, and cellular evidence that the SARS-CoV-2 virus utilizes a two-receptor (SA and ACE2) strategy. This allows the SARS-CoV-2 spike to use SA moieties on the cell membrane as a binding anchor, which increases the residence time of the virus on the cell surface and aids in the binding of the main receptor, ACE2, via 2D diffusion.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: SARS-CoV-2 / COVID-19 Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: SARS-CoV-2 / COVID-19 Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article