Your browser doesn't support javascript.
loading
Bidentate selenium-based chalcogen bond catalyzed cationic polymerization of p-methoxystyrene.
Cao, Luya; Chen, Hao; Fu, Hongjun; Xian, Ji; Cao, Hongzhang; Pan, Xiaobo; Wu, Jincai.
Afiliação
  • Cao L; State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China. wujc@lzu.edu.cn.
  • Chen H; State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China.
  • Fu H; State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China. wujc@lzu.edu.cn.
  • Xian J; State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China. wujc@lzu.edu.cn.
  • Cao H; State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China. wujc@lzu.edu.cn.
  • Pan X; State Key Laboratory of Applied Organic Chemistry (Lanzhou University), Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lan-zhou 730000, People's Republic of China. wujc@lzu.edu.cn.
  • Wu J; State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, People's Republic of China.
Chem Commun (Camb) ; 60(10): 1321-1324, 2024 Jan 30.
Article em En | MEDLINE | ID: mdl-38197262
ABSTRACT
The application of selenium-based non-covalent bond catalysis in living cationic polymerization has rarely been reported. In this work, the cationic polymerization of p-methoxystyrene (pMOS) was performed using a bidentate selenium bond catalyst - a new water-tolerant Lewis acid catalyst. A polymer with controllable molecular weight and narrow molecular weight distribution can be obtained at room temperature, with a maximum molecular weight of 23.3 kDa. This selenium bond compound can also catalyze the controllable cationic polymerization of p-methoxy styrene under environmental conditions. By changing the monomer feeding ratio, a secondary feeding experiment and DFT analysis, it is shown that the selenium bond catalyst can induce polymer chain growth by reversibly activating dormant covalent bonds (C-OH).

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article