Your browser doesn't support javascript.
loading
Interlayer-coupling-engineerable flat bands in twisted MoSi2N4bilayers.
Dai, Yang; Zhang, Zhineng; Zhao, Puqin; Cheng, Yingchun.
Afiliação
  • Dai Y; Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
  • Zhang Z; Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
  • Zhao P; School of Physical and Mathematical Sciences, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
  • Cheng Y; Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, People's Republic of China.
J Phys Condens Matter ; 36(16)2024 Jan 23.
Article em En | MEDLINE | ID: mdl-38211330
ABSTRACT
The two-dimensional layered semiconductor MoSi2N4, which has several advantages including high strength, excellent stability, high hole mobility, and high thermal conductivity, was recently successfully synthesized using chemical vapor deposition. Based on first-principles calculations, we investigate the effects of the twist angle and interlayer distance variation on the electronic properties of twisted bilayer MoSi2N4. The flat bands are absent for twisted bilayer MoSi2N4when the twist angleθis reduced to 3.89°. Taking twisted bilayer MoSi2N4withθof 5.09° as an example, we find that flat bands emerge as the interlayer distance decreases. As the interlayer distance can be effectively modulated by hydrostatic pressure, we propose hydrostatic pressure as a knob for tailoring the flat bands in twisted bilayer MoSi2N4. Our findings provide theoretical support for extending the applications of MoSi2N4in strong correlation physics and superconductivity.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article