Your browser doesn't support javascript.
loading
Minimal numerical ingredients describe chemical microswimmers' 3-D motion.
Bailey, Maximilian R; Barriuso Gutiérrez, C Miguel; Martín-Roca, José; Niggel, Vincent; Carrasco-Fadanelli, Virginia; Buttinoni, Ivo; Pagonabarraga, Ignacio; Isa, Lucio; Valeriani, Chantal.
Afiliação
  • Bailey MR; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland.
  • Barriuso Gutiérrez CM; Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain. cvaleriani@ucm.es.
  • Martín-Roca J; Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain. cvaleriani@ucm.es.
  • Niggel V; Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, Madrid, Spain. cvaleriani@ucm.es.
  • Carrasco-Fadanelli V; Departamento de Química Física, Facultad de Química, Universidad Complutense de Madrid, Madrid, Spain.
  • Buttinoni I; Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland.
  • Pagonabarraga I; Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany.
  • Isa L; Department of Physics, Institute of Experimental Colloidal Physics, Heinrich-Heine University, Düsseldorf, Germany.
  • Valeriani C; Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona, Spain.
Nanoscale ; 16(5): 2444-2451, 2024 Feb 01.
Article em En | MEDLINE | ID: mdl-38214073
ABSTRACT
The underlying mechanisms and physics of catalytic Janus microswimmers is highly complex, requiring details of the associated phoretic fields and the physiochemical properties of catalyst, particle, boundaries, and the fuel used. Therefore, developing a minimal (and more general) model capable of capturing the overall dynamics of these autonomous particles is highly desirable. In the presented work, we demonstrate that a coarse-grained dissipative particle-hydrodynamics model is capable of describing the behaviour of various chemical microswimmer systems. Specifically, we show how a competing balance between hydrodynamic interactions experienced by a squirmer in the presence of a substrate, gravity, and mass and shape asymmetries can reproduce a range of dynamics seen in different experimental systems. We hope that our general model will inspire further synthetic work where various modes of swimmer motion can be encoded via shape and mass during fabrication, helping to realise the still outstanding goal of microswimmers capable of complex 3-D behaviour.

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article