Your browser doesn't support javascript.
loading
Effects of biochar on the manganese enrichment and oxidation by a microalga Scenedesmus quadricauda in the aquatic environment.
Li, Yongchao; Zhou, Chuanfeng; Chen, Liping; Deng, Renjian; Wong, Minghung; Shan, Shengdao.
Afiliação
  • Li Y; Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR C
  • Zhou C; Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
  • Chen L; School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China.
  • Deng R; School of Civil Engineering, Hunan University of Science and Technology, Xiangtan 411201, PR China.
  • Wong M; Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China; Consortium on Health, Environment, Education, and Research (CHEER), Department of Science and
  • Shan S; Key Laboratory of Recycling and Eco-Treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, PR China.
Ecotoxicol Environ Saf ; 271: 115961, 2024 Feb.
Article em En | MEDLINE | ID: mdl-38218106
ABSTRACT
Microalgae play a significant impact in the biogeochemical cycle of Mn(II) in the aquatic ecosystem. Meanwhile, the inflow of biochar into the water bodies is bound to impact the aquatic organisms. However, the influence of biochar on the manganese transformation in algae-rich water has not drawn much attention. Thus, we studied the effects of rice straw biochar on manganese enrichment and oxidation by a common type of algae in freshwater (Scenedesmus quadricauda). The results showed that Mn(II) was absorbed intracellularly and adsorbed extracellularly by active algal cells. A significant portion of enriched Mn(II) was oxidized to amorphous precipitates MnO2, MnOOH, and Mn2O3. Moreover, the extracellular bound Mn(II) content in the coexistent system of algae and biochar increased compared with the pure Scenedesmus quadricauda system. Nevertheless, the intracellular Mn content was continually lowered as the biochar dose rose from an initial 0.2 to 2.0 g·L-1, suggesting that Mn assimilation of the cell was suppressed. It was calculated that the total enrichment ability of Scenedesmus quadricauda in the algae-biochar coexistent system was 0.31- 15.32 mg Mn/g biomass, more than that in the pure algae system. More importantly, with biochar in the algae system, the amount of generated MnOx increased, and more Mn(II) was oxidized into highly-charged Mn(IV). This was probably because the biochar could relieve the stress of massive Mn(II) on algae and support the MnOx precipitates. In brief, moderate biochar promoted the Mn(II) accumulation by algal cells and its oxidation activity. This study offers deeper insight into the bioconversion of Mn(II) by algae and the potential impact of biochar application to the aquatic system.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carvão Vegetal / Scenedesmus / Microalgas Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Carvão Vegetal / Scenedesmus / Microalgas Idioma: En Ano de publicação: 2024 Tipo de documento: Article