Your browser doesn't support javascript.
loading
Short-chain fatty acids ameliorate experimental anti-glomerular basement membrane disease.
Liu, Jing; Gu, Qiu-Hua; Cui, Zhao; Zhao, Ming-Hui; Jia, Xiao-Yu.
Afiliação
  • Liu J; Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China;
  • Gu QH; Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China;
  • Cui Z; Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China;
  • Zhao MH; Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China;
  • Jia XY; Renal Division, Peking University First Hospital, Beijing, China; Institute of Nephrology, Peking University, Beijing, China; Key Laboratory of Renal Disease, Ministry of Health of China, Beijing, China; Key Laboratory of CKD Prevention and Treatment, Ministry of Education of China, Beijing, China;
Clin Immunol ; 259: 109903, 2024 02.
Article em En | MEDLINE | ID: mdl-38218211
ABSTRACT

BACKGROUND:

Short-chain fatty acids (SCFAs), as the link between gut microbiota and the immune system, had been reported to be protective in many autoimmune diseases by the modulation of T cell differentiation. The pathogenic role of autoreactive Th1 and Th17 cells and the protective role of Treg cells in the pathogenesis of anti-GBM disease have been fully demonstrated. Thus, the present study aimed to investigate the therapeutic effects of SCFAs in a rat model of anti-GBM disease. MATERIALS AND

METHODS:

Experimental anti-GBM disease was constructed by immunizing Wistar Kyoto rats with a nephrogenic T cell epitope α3127-148, and intervened by sodium acetate, sodium propionate, or sodium butyrate, 150 mM in the drinking water from day 0 to 42. Kidney injury was accessed by the biochemical analyzer, immunofluorescence, and immunohistochemistry. Antibody response was detected by ELISA. T cell clustering and proliferation were detected by flow cytometry. Human kidney 2 (HK2) cells were stimulated in vitro and cytokines were assessed by quantitative real-time PCR.

RESULTS:

Treatment with sodium acetate, sodium propionate, or sodium butyrate ameliorated the severity of kidney impairment in rats with anti-GBM glomerulonephritis. In the sodium butyrate-treated rats, the urinary protein, serum creatinine, and blood urea nitrogen levels were significantly lower; the percentage of crescent formation in glomeruli was significantly reduced; and the kidneys showed reduced IgG deposition, complement activation, T cell, and macrophage infiltration as well as the level of circulating antibodies against anti-α3(IV)NC1. The treatment of sodium butyrate reduced the α3127-148-specific T cell activation and increased the Treg cells differentiation and the intestinal beneficial bacteria flora. It also alleviated the damage of HK2 cells treated with inflammatory factors and complement.

CONCLUSION:

Treatment with SCFAs, especially butyrate, alleviated anti-GBM nephritis in rat model, indicating its potential therapeutic effects in clinical usage.
Assuntos
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença Antimembrana Basal Glomerular Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Doença Antimembrana Basal Glomerular Tipo de estudo: Etiology_studies / Prognostic_studies Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article