Your browser doesn't support javascript.
loading
Theoretical Design and Synthesis of Caged Compounds Using X-Ray-Triggered Azo Bond Cleavage.
Ogawara, Koki; Inanami, Osamu; Takakura, Hideo; Saita, Kenichiro; Nakajima, Kohei; Kumar, Sonu; Ieda, Naoya; Kobayashi, Masato; Taketsugu, Tetsuya; Ogawa, Mikako.
Afiliação
  • Ogawara K; Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
  • Inanami O; Laboratory of Radiation Biology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, 060-0818, Japan.
  • Takakura H; Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
  • Saita K; Quantum Chemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
  • Nakajima K; Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
  • Kumar S; Quantum Chemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
  • Ieda N; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
  • Kobayashi M; Laboratory of Bioanalysis and Molecular Imaging, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
  • Taketsugu T; Quantum Chemistry Lab, Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, 060-0810, Japan.
  • Ogawa M; Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido, 001-0021, Japan.
Adv Sci (Weinh) ; 11(12): e2306586, 2024 Mar.
Article em En | MEDLINE | ID: mdl-38225711
ABSTRACT
Caged compounds are frequently used in life science research. However, the light used to activate them is commonly absorbed and scattered by biological materials, limiting their use to basic research in cells or small animals. In contrast, hard X-rays exhibit high bio-permeability due to the difficulty of interacting with biological molecules. With the main goal of developing X-ray activatable caged compounds, azo compounds are designed and synthesized with a positive charge and long π-conjugated system to increase the reaction efficiency with hydrated electrons. The azo bonds in the designed compounds are selectively cleaved by X-ray, and the fluorescent substance Diethyl Rhodamine is released. Based on the results of experiments and quantum chemical calculations, azo bond cleavage is assumed to occur via a two-step process a two-electron reduction of the azo bond followed by N─N bond cleavage. Cellular experiments also demonstrate that the azo bonds can be cleaved intracellularly. Thus, caged compounds that can be activated by an azo bond cleavage reaction promoted by X-ray are successfully generated.
Palavras-chave

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article