Your browser doesn't support javascript.
loading
Nociceptive Processing of Elite Athletes Varies between Sport-Specific Loads: An EEG-Based Study Approach.
Dreismickenbecker, Elias; Fleckenstein, Johannes; Walter, Carmen; Enax-Krumova, Elena K; Fischer, Michael J M; Kreuzer, Matthias; Zinn, Sebastian; Anders, Malte.
Afiliação
  • Fleckenstein J; Department of Sports Medicine and Exercise Physiology, Institute of Sports Sciences, Goethe University, Frankfurt, GERMANY.
  • Walter C; Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, GERMANY.
  • Enax-Krumova EK; Department of Neurology, BG University Hospital Bergmannsheil gGmbH Bochum, Ruhr University Bochum, Bochum, GERMANY.
  • Fischer MJM; Center of Physiology and Pharmacology, Medical University of Vienna, Vienna, AUSTRIA.
  • Kreuzer M; Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, GERMANY.
  • Anders M; Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, GERMANY.
Med Sci Sports Exerc ; 56(6): 1046-1055, 2024 Jun 01.
Article em En | MEDLINE | ID: mdl-38227482
ABSTRACT

INTRODUCTION:

For the downstream nociceptive processing of elite athletes, recent studies indicate that athletes probably tolerate more pain as compared with a normally active population. Phenotyping the nociceptive processing of athletes in different types of endurance sports can provide insight into training-specific effects, which may help in understanding the long-term effects of specific exercise.

METHODS:

Twenty-six elite endurance athletes from the disciplines of rowing, triathlon, and running and 26 age- and sex-matched, recreationally active control subjects who participated in the subjective pain perception and processing of standardized noxious stimuli were investigated by EEG. This included standardized heat pain thresholds (HPT) and contact heat-evoked potentials from heat stimulation, measured with EEG as well as pinprick-evoked potentials from mechanical stimulation.

RESULTS:

After noxious stimulation, athletes showed a higher activation of the event-related spectral perturbation (ERSP) patterns in the N2P2 EEG response at the Cz Electrode compared with the controls. After noxious contact heat stimulation, triathletes had a higher ERSP activation compared with the controls, whereas the rowers had a higher ERSP activation after noxious mechanical stimulation. Also, HPT in triathletes were increased despite their increased central activation after thermal stimulation. We found a correlation between increased HPT and training hours and years, although athletes did not differ within these variables.

CONCLUSIONS:

Although we were able to identify differences between athletes of different endurance sports, the reasons and implications of these differences remain unclear. The study of sport-specific somatosensory profiles may help to understand the mechanisms of exercise-related long-term effects on pain processing and perception. Furthermore, sport-specific somatosensory effects may support the personalization of exercise interventions and identify risk factors for chronic pain in elite athletes.
Assuntos

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Limiar da Dor / Eletroencefalografia / Percepção da Dor Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Base de dados: MEDLINE Assunto principal: Limiar da Dor / Eletroencefalografia / Percepção da Dor Tipo de estudo: Prognostic_studies / Risk_factors_studies Limite: Adult / Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article